
nobodd 0.4 Documentation
Release 0.4

Dave Jones

Mar 07, 2024

CONTENTS

1 Installation 1

2 Tutorial 3

3 How To Guides 9

4 Explanations 13

5 CLI Reference 17

6 API Reference 25

7 Development 67

8 Changelog 69

9 License 71

Python Module Index 73

Index 75

i

ii

CHAPTER

ONE

INSTALLATION

nobodd is distributed in several formats. The following sections detail installation on a variety of platforms.

1.1 Ubuntu PPA

For Ubuntu, it may be simplest to install from the author’s PPA1 as follows:

$ sudo add-apt-repository ppa:waveform/nobodd
$ sudo apt install nobodd

If you wish to remove nobodd:

$ sudo apt remove nobodd

The deb-packaging includes a full man-page, and systemd service definitions.

1.2 Other Platforms

If your platform is not covered by one of the sections above, nobodd is available from PyPI and can therefore be
installed with the Python setuptools “pip” tool:

$ pip install nobodd

On some platforms you may need to use a Python 3 specific alias of pip:

$ pip3 install nobodd

If you do not have either of these tools available, please install the Python setuptools2 package first.
You can upgrade nobodd via pip:

$ pip install --upgrade nobodd

And removal can be performed as follows:

$ pip uninstall nobodd

1 https://launchpad.net/~waveform/+archive/ubuntu/nobodd
2 https://pypi.python.org/pypi/setuptools/

1

https://launchpad.net/~waveform/+archive/ubuntu/nobodd
https://pypi.python.org/pypi/setuptools/

nobodd 0.4 Documentation, Release 0.4

2 Chapter 1. Installation

CHAPTER

TWO

TUTORIAL

nobodd is a confusingly named, but simple TFTP (Trivial File Transfer Protocol) server intended for net-booting
Raspberry Pis directly from OS images without having to loop-back mount or otherwise re-write those images.
In order to get started you will need the following pre-requisites:

• A Raspberry Pi you wish to netboot. This tutorial will be assuming a Pi 4, but the Pi 2B, 3B, 3B+, 4B, and
5 all support netboot. However, all have subtly different means of configuring their netboot support, so in the
interests of brevity this tutorial will only cover the method for the Pi 4.

• A micro-SD card. This is only required for the initial netboot configuration of the Pi 4, and for discovering the
serial number of the board.

• A server that will serve the OS image to be netbooted. This can be another Raspberry Pi, but if you eventually
wish to scale to several netbooting clients you probably want something with a lot more I/O bandwidth. We
will assume this server is running Ubuntu 24.04, and you have root authority to install new packages.

• Ethernet networking connecting the two machines; netboot will not operate over WiFi.
• The addressing details of your ethernet network, specifically the network address and mask (e.g.
192.168.1.0/24).

2.1 Client Side

To configure your Pi 4 for netboot, use rpi-imager3 to flash Ubuntu Server 24.04 64-bit to your micro-SD card. Boot
your Pi 4 with the micro-SD card and wait for cloud-init4 to finish the initial user configuration. Log in with the
default user (username “ubuntu”, password “ubuntu”, unless you specified otherwise in rpi-imager), and follow the
prompts to set a new password.
Run sudo rpi-eeprom-config --edit, and enter your password for “sudo”. You will find yourself in an
editor, with the Pi’s boot configuration from the EEPROM, which will most likely look something like the following:

[all]
BOOT_UART=0
WAKE_ON_GPIO=1
ENABLE_SELF_UPDATE=1
BOOT_ORDER=0xf41

Note: Do not be concerned if several other values appear, or the ordering differs. Various versions of the Raspberry
Pi boot EEPROM have had differing defaults for their configuration, and some later ones include a lot more values.

The value we are concerned with is BOOT_ORDER under the [all] section, which may be the only section in the
file. This is a hexadecimal value (indicated by the “0x” prefix) in which each digit specifies another boot source in
reverse order. The digits that may be specified include:

3 https://www.raspberrypi.com/software/
4 https://cloudinit.readthedocs.io/

3

https://www.raspberrypi.com/software/
https://cloudinit.readthedocs.io/

nobodd 0.4 Documentation, Release 0.4

Mode Description
1 SD CARD Boot from the SD card
2 NETWORK Boot from TFTP over ethernet
4 USB-MSD Boot from a USB MSD (mass storage device)
e STOP Stop the boot and display an error pattern
f RESTART Restart the boot from the first mode

A full listing5 of valid digits can be found in the Raspberry Pi documentation. The current setting shown above is
“0xf41”. Remembering that this is in reversed order, we can interpret this as “try the SD card first (1), then try a
USB mass storage device (4), then restart the sequence if neither worked (f)”.
We’d like to try network booting first, so we need to add the value 2 to the end, giving us: “0xf412”. Change the
“BOOT_ORDER” value to this, save and exit the editor.

Warning: Youmay be tempted to remove values from the boot order to avoid delay (e.g. testing for the presence
of an SD card). However, you are strongly advised to leave the value 1 (SD card booting) somewhere in your
boot order to permit recovery from an SD card (or future re-configuration).

Upon exiting, the rpi-eeprom-config command should prompt you that you need to reboot in order to flash
the new configuration onto the boot EEPROM. Enter sudo reboot to do so, and let the boot complete fully.
Once you are back at a login prompt, log back in with your username and password, and then run sudo
rpi-eeprom-config once more to query the boot configuration and make sure your change has taken effect. It
should output something like:

[all]
BOOT_UART=0
WAKE_ON_GPIO=1
ENABLE_SELF_UPDATE=1
BOOT_ORDER=0xf412

Finally, we need the serial number of your Raspberry Pi. This can be found with the following command.

$ grep ^Serial /proc/cpuinfo
Serial : 10000000abcd1234

Note this number down somewhere safe as we’ll need it for the server configuration later. The Raspberry Pi side of
the configuration is now complete, and we can move on to configuring our netboot server.

2.2 Server Side

As mentioned in the pre-requisites, we will assume the server is running Ubuntu 24.04, and that you are logged in
with a user that has root authority (via “sudo”). Firstly, install the packages which will provide our TFTP6, NBD7,
and DHCP8 proxy servers, along with some tooling to customize images.

$ sudo apt install nobodd-tftpd nobodd-tools nbd-server xz-utils dnsmasq

The first thing to do is configure dnsmasq(8) as a DHCP proxy server. Find the interface name of your server’s
primary ethernet interface (the one that will talk to the same network as the Raspberry Pi) within the output of the
ip addr show up command. It will probably look something like “enp2s0f0”.

5 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#BOOT_ORDER
6 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
7 https://en.wikipedia.org/wiki/Network_block_device
8 https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

4 Chapter 2. Tutorial

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#BOOT_ORDER
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_block_device
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

nobodd 0.4 Documentation, Release 0.4

$ ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default␣
↪→qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group␣
↪→default qlen 1000

link/ether 0a:0b:0c:0d:0e:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.1.4/16 brd 192.168.1.255 scope global enp2s0f0

valid_lft forever preferred_lft forever
inet6 fd00:abcd:1234::4/128 scope global noprefixroute

valid_lft forever preferred_lft 53017sec
inet6 fe80::beef:face:d00d:1234/64 scope link

valid_lft forever preferred_lft forever
3: enp1s0f1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master br0 state␣
↪→UP group default qlen 1000

link/ether 1a:0b:0c:0d:0e:0f brd ff:ff:ff:ff:ff:ff
4: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group␣
↪→default qlen 1000

link/ether 02:6c:fc:6f:56:5c brd ff:ff:ff:ff:ff:ff
inet6 fe80::60d9:48ff:fee3:c955/64 scope link

valid_lft forever preferred_lft forever
...

Add the following configuration lines to /etc/dnsmasq.conf adjusting the ethernet interface name, and the
network mask on the highlighted lines to your particular setup.

Only listen on the primary ethernet interface
interface=enp2s0f0
bind-interfaces

Perform DHCP proxying on the network, and advertise our
PXE-ish boot service
dhcp-range=192.168.1.255,proxy
pxe-service=0,"Raspberry Pi Boot"

Restart dnsmasq to ensure it’s listening for DHCP connections (unfortunately reload is not sufficient in this case).

$ sudo systemctl restart dnsmasq.service

Next, we need to obtain an image to boot on our Raspberry Pi. We’ll be using the Ubuntu 24.04 Server for Raspberry
Pi image as this is configured for NBD boot out of the box. We will place this image under a /srv/images
directory and unpack it so we can manipulate it.

$ sudo mkdir /srv/images
$ sudo chown ubuntu:ubuntu /srv/images
$ cd /srv/images
$ wget http://cdimage.ubuntu.com/releases/24.04/release/ubuntu-24.04-preinstalled-
↪→server-arm64+raspi.img.xz
...

$ wget http://cdimage.ubuntu.com/releases/24.04/release/SHA256SUMS
...

$ sha256sum --check --ignore-missing SHA256SUMS
$ rm SHA256SUMS
$ unxz ubuntu-24.04-preinstalled-server-arm64+raspi.img.xz

We’ll use the nobodd-prep command to adjust the image so that the kernel will try and find its root on our NBD
server. At the same time, we’ll have the utility generate the appropriate configurations for nbd-server(1) and
nobodd-tftpd.

2.2. Server Side 5

nobodd 0.4 Documentation, Release 0.4

nobodd-prep needs to know several things in order to operate, but tries to use sensible defaults where it can:
• The filename of the image to customize; we’ll simply provide this on the command line.
• The size we want to expand the image to; this will be size of the “disk” (or “SD card”) that the Raspberry Pi
sees. The default is 16GB, which is fine for our purposes here.

• The number of the boot partition within the image; the default is the first FAT partition, which is fine in this
case.

• The name of the file containing the kernel command line on the boot partition; the default is cmdline.txt
which is correct for the Ubuntu images.

• The number of the root partition within the image; the default is the first non-FAT partition, which is also fine
here.

• The host-name of the server; the default is the output of hostname --fqdn but this can be specified
manually with nobodd-prep --nbd-host (page 17).

• The name of the NBD share; the default is the stem of the image filename (the filename without its extensions)
which in this case would be ubuntu-24.04-preinstalled-server-arm64+raspi. That’s a bit
of a mouthful so we’ll override it with nobodd-prep --nbd-name (page 17).

• The serial number of the Raspberry Pi; there is no default for this, so we’ll provide it with nobodd-prep
--serial (page 18).

• The path to write the two configuration files we want to produce; we’ll specify these manually with
nobodd-prep --tftpd-conf (page 18) and nobodd-prep --nbd-conf (page 18)

Putting all this together we run,

$ nobodd-prep --nbd-name ubuntu-noble --serial 10000000abcd1234 \
> --tftpd-conf tftpd-noble.conf --nbd-conf nbd-noble.conf \
> ubuntu-24.04-preinstalled-server-arm64+raspi.img

Now we need to move the generated configuration files to their correct locations and ensure they’re owned by root (so
unprivileged users cannot modify them), ensure the modified image is owned by the “nbd” user (so the NBD service
can read and write to it), and reload the configuration in the relevant services.

$ sudo chown nbd:nbd ubuntu-24.04-preinstalled-server-arm64+raspi.img
$ sudo chown root:root tftpd-noble.conf nbd-noble.conf
$ sudo mv tftpd-noble.conf /etc/nobodd/conf.d/
$ sudo mv nbd-noble.conf /etc/nbd-server/conf.d/
$ sudo systemctl reload nobodd-tftpd.service
$ sudo systemctl reload nbd-server.service

2.3 Testing and Troubleshooting

At this point your configuration should be ready to test. Ensure there is no SD card in the slot, and power it on. After
a short delay you should see the “rainbow” boot screen appear. This will be followed by an uncharacteristically long
delay on that screen. The reason is that your Pi is transferring the initramfs over TFTP which is not the most efficient
protocol9. However, eventually you should be greeted by the typical Linux kernel log scrolling by, and reach a typical
booted state the same as you would with a freshly flashed SD card.
If you hit any snags here, the following things are worth checking:

• Pay attention to any errors shown on the Pi’s bootloader screen. In particular, you should be able to see the Pi
obtaining an IP address via DHCP and various TFTP request attempts.

• Run journalctl -f --unit nobodd-tftpd.service on your server to follow the TFTP log
output. Again, if things are working, you should be seeing several TFTP requests here. If you see nothing,

9 absent certain extensions, which the Pi’s bootloader doesn’t implement.

6 Chapter 2. Tutorial

nobodd 0.4 Documentation, Release 0.4

double check the network mask is specified correctly in the dnsmasq(8) configuration, and that any firewall
on your server is permitting inbound traffic to port 69 (the default TFTP port).

• You will see numerous “Early terminate” TFTP errors in the journal output. This is normal, and appears to be
how the Pi’s bootloader operates10.

10 at a guess it’s attempting to determine the size of a file with the tsize extension, terminating the transfer, allocating RAM for the file, then
starting the transfer again. While not strictly necessary, remember that the bootloader operates with limited resources and simplicity of operation
is the order of the day.

2.3. Testing and Troubleshooting 7

nobodd 0.4 Documentation, Release 0.4

8 Chapter 2. Tutorial

CHAPTER

THREE

HOW TO GUIDES

The following guides cover specific, but commonly encountered, circumstances in operating a Raspberry Pi netboot
server using NBD.

3.1 How to netboot Ubuntu 22.04

The Ubuntu 22.04 (jammy) images are not compatible with NBD boot out of the box as they lack the nbd-client
package in their seed. However, you can modify the image to make it compatible.

3.1.1 On the Pi

Fire up rpi-imager11 and flash Ubuntu 22.04.4 server onto an SD card, then boot that SD card on your Pi (the model
does not matter provided it can boot the image).

Warning: Do not be tempted to upgrade packages at this point. Specifically, the kernel package must not be
upgraded yet.

Install the linux-modules-extra-raspi package for the currently running kernel version, and the
nbd-client package.

$ sudo apt install linux-modules-extra-$(uname -r) nbd-client

OnUbuntu versions prior to 24.04, the nbd kernel module was moved out of the default linux-modules-raspi
package for efficiency. We specifically need the version matching the running kernel version because installing this
package will regenerate the initramfs (initrd.img). We’ll be copying that regenerated file into the image we’re
going to netboot and it must match the kernel version in that image. This is why it was important not to upgrade any
packages after the first boot.
We also need to install the NBD client package to add the nbd-client executable to the initramfs, along with
some scripts to call it if the kernel command line specifies an NBD device as root:
We copy the regenerated initrd.img to the server, and shut down the Pi. Adjust the ubuntu@server reference
below to fit your user on your server.

$ scp -q /boot/firmware/initrd.img ubuntu@server:
$ sudo poweroff

11 https://www.raspberrypi.com/software/

9

https://www.raspberrypi.com/software/

nobodd 0.4 Documentation, Release 0.4

3.1.2 On the Server

Download the same OS image to your server, verify its content, unpack it, and rename it to something more reason-
able.

$ wget http://cdimage.ubuntu.com/releases/22.04.4/release/ubuntu-22.04.4-
↪→preinstalled-server-arm64+raspi.img.xz
...

$ wget http://cdimage.ubuntu.com/releases/22.04.4/release/SHA256SUMS
...

$ sha256sum --check --ignore-missing SHA256SUMS
ubuntu-22.04.4-preinstalled-server-arm64+raspi.img.xz: OK
$ rm SHA256SUMS
$ mv ubuntu-22.04.4-preinstalled-server-arm64+raspi.img jammy.img

Next we need to create a cloud-init configuration which will perform the same steps we performed earlier on the first
boot of our fresh image, namely to install nbd-client and linux-modules-extra-raspi, alongside the
usual user configuration.

$ cat << EOF > user-data
#cloud-config

chpasswd:
expire: true
users:
- name: ubuntu
password: ubuntu
type: text

ssh_pwauth: false

package_update: true
packages:
- nbd-client
- linux-modules-extra-raspi
EOF

See the cloud-init documentation12, a this series of blog posts13 for more ideas on what can be done with the
user-data file.

3.1.3 Preparing the Image

When preparing our image withnobodd-prepwemust remember to copy in ouruser-data andinitrd.img
files, overwriting the ones on the boot partition.

$ nobodd-prep --size 16GB --copy initrd.img --copy user-data jammy.img

At this point you should have a variant of the Ubuntu 22.04 image that is capable of being netbooted over NBD.
12 https://cloudinit.readthedocs.io/
13 https://waldorf.waveform.org.uk/tag/cloud-init.html

10 Chapter 3. How To Guides

https://cloudinit.readthedocs.io/
https://waldorf.waveform.org.uk/tag/cloud-init.html

nobodd 0.4 Documentation, Release 0.4

3.2 How to firewall your netboot server

If you wish to add a netfilter (or iptables) firewall to your server running nobodd and nbd-server, there are a few things
to be aware of.
The NBD14 protocol is quite trivial to firewall; the protocol uses TCP and listens on a single port: 10809. Hence,
adding a rule that allows “NEW” inbound TCP connections on port 10809, and a rule to permit traffic on “ESTAB-
LISHED” connections is generally sufficient (where “NEW” and “ESTABLISHED” have their typical meanings in
netfilter’s connection state tracking).
The TFTP15 protocol is, theoretically at least, a little harder. The TFTP protocol uses UDP (i.e. it’s connectionless)
and though it starts on the privileged port16 69, this is only the case for the initial in-bound packet. All subsequent
packets in a transfer take place on an ephemeral port on both the client and the server17 .
Hence, a typical transfer looks like this:

Thankfully, because the server sends the initial response from its ephemeral port, and the client replies to that
ephemeral port, it will also count as “ESTABLISHED” traffic in netfilter’s parlance. Hence, all that’s required to
successfully firewall the TFTP side is to permit “NEW” inbound packets on port 69, and to permit “ESTABLISHED”
UDP packets.
Putting this altogether, a typical iptables(8) sequence might look like this:

14 https://en.wikipedia.org/wiki/Network_block_device
15 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
16 https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Well-known_ports
17 transfers are uniquely identified by the tuple of the client’s ephemeral port, and the server’s ephemeral port; this ensures a client may have

multiple simultaneous transfers even in the case of a degenerate client that initiates multiple simultaneous transfers from a single port

3.2. How to firewall your netboot server 11

https://en.wikipedia.org/wiki/Network_block_device
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Well-known_ports

nobodd 0.4 Documentation, Release 0.4

$ sudo -i
[sudo] Password:
iptables -A INPUT -p tcp -m state --state ESTABLISHED -j ACCEPT
iptables -A INPUT -p tcp -m state --state NEW --dport 10809 -j ACCEPT
iptables -A INPUT -p udp -m state --state ESTABLISHED -j ACCEPT
iptables -A INPUT -p udp -m state --state NEW --dport 69 -j ACCEPT

12 Chapter 3. How To Guides

CHAPTER

FOUR

EXPLANATIONS

The following chapter(s) contain explanations thatmay aid understanding of Raspberry Pi’s netboot process in general.

4.1 Netboot on the Pi

In order to understand nobodd, it is useful to understand the netboot procedure on the Raspberry Pi in general. At a
high level, it consists of three phases which we’ll cover in the following sections.

4.1.1 DHCP

The first phase is quite simply a fairly typicalDHCP phase, in which the bootloader attempts to obtain an IPv4 address
from the local DHCP (Dynamic Host Configuration Protocol) server. On the Pi 4 (and later models), the address
obtained can be seen on the boot diagnostics screen. Near the top the line starting with “net:” indicates the current
network status. Initially this will read:

net: down ip: 0.0.0.0 sn: 0.0.0.0 gw: 0.0.0.0

Shortly before attempting netboot, this line should change to something like the following:

net: up ip: 192.168.1.137 sn: 255.255.255.0 gw: 192.168.1.1

This indicates that the Pi has obtained the address “192.168.1.137” on a class D subnet (“192.168.1.0/24” in CIDR18

form), and knows the local network gateway is at “192.168.1.1”.
The bootloader also inspects certain DHCP options to locate the TFTP19 server for the next phase. Specifically:

• DHCP option 66 (TFTP server) can specify the address directly
• If DHCP option 43 (vendor options) specifies PXE string “Raspberry Pi Boot”34 then option 54 (server iden-
tifier) will be used

• On the Pi 4 (and later), the EEPROM can override both of these with the TFTP_IP20 option
With the network configured, and the TFTP server address obtained, we move onto the TFTP phase…

18 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
19 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
34 In early versions of the Raspberry Pi bootloader, the string needed to include three trailing spaces, i.e. "Raspberry Pi Boot ". Later

versions of the bootloader perform a sub-string match.
20 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#TFTP_IP

13

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#TFTP_IP

nobodd 0.4 Documentation, Release 0.4

4.1.2 TFTP

Note: Most of the notes under this section are specific, in some way, to the netboot sequence on the Pi 4. While
older and newer models may broadly follow the same sequence, there will be differences.

The bootloader’s TFTP21 client first attempts to locate the start4.elf file. By default, it looks for this in a
directory named after the Pi’s serial number. On the Pi 4 and later models, the EEPROM configuration can override
this behaviour with the TFTP_PREFIX22 option, but we will only cover the default behaviour here.
All subsequent files will be requested from within this serial number directory prefix35. Hence, when we say the
bootloader requests SERIAL/vmlinuz, we mean it requests the file vmlinuz from within the virtual directory
named after the Pi’s serial number36.
The attempt to retrieve start4.elf is immediately aborted when it is located, presumably because the intent is
to determine the existence of the prefix directory, rather than the file itself. Next the bootloader attempts to read
SERIAL/config.txt, which will configure the rest of the boot sequence.
Once SERIAL/config.txt has been retrieved, the bootloader parses it to discover the name of the tertiary
bootloader to load37, and requests SERIAL/start.elf or SERIAL/start4.elf (depending on the model)
and the corresponding fix-up file (SERIAL/fixup.dat or SERIAL/fixup4.dat respectively).
The bootloader now executes the tertiary “start.elf” bootloader which requests SERIAL/config.txt again. This
is re-parsed38 and the name of the base device-tree, kernel, kernel command line, (optional) initramfs, and any
(optional) device-tree overlays are determined. These are then requested over TFTP, placed in RAM, and finally the
bootloader hands over control to the kernel.

TFTP Extensions

A brief aside on the subject of TFTP extensions (as defined in RFC 234723). The basic TFTP protocol is ex-
tremely simple (as the acronym would suggest) and also rather inefficient, being limited to 512-byte blocks, in-order,
synchronously (each block must be acknowledged before another can be sent), with no retry mechanism. Various
extensions have been proposed to the protocol over the years, including those in RFC 234724, RFC 234825, RFC
234926, and RFC 744027.
The Pi bootloader implements some of these extensions. Specifically, it uses the “blocksize” extension (RFC 234828)
to negotiate a larger size of block to transfer, and the “tsize” extension (RFC 234929) to attempt to determine the
size of a transfer prior to it beginning.
However, its use of “tsize” is slightly unusual in that, when it finds the server supports it, it frequently starts a transfer
with “tsize=0” (requesting the size of the file), but when the server responds with, for example, “tsize=1234” in the
OACK packet (indicating the file to be transferred is 1234 bytes large), the bootloader then terminates the transfer.
In the case of the initial request for start4.elf (detailed above), this is understandable as a test for the existence
of a directory, rather than an actual attempt to retrieve a file. However, in later requests the bootloader terminates the

21 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
22 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#TFTP_IP
35 If start4.elf is not found in the serial-number directory, the bootloader will attempt to lovate start4.elf with no directory prefix.

If this succeeds, all subsequent requests will have no serial-number directory prefix.
36 Some Pi serial numbers begin “10000000”. This prefix is ignored for the purposes of constructing the serial-number directory prefix. For

example, if the serial number is “10000000abcd1234”, the config.txt file would be requested as abcd1234/config.txt.
37 This does not happen on the Pi 5, which loads the tertiary bootloader from its (larger) EEPROM. On all prior models, the tertiary bootloader

(start*.elf) loads from the boot medium, and the specific file loaded may be customized by config.txt.
38 The tertiary bootloader operates on all [sections] in the config.txt. The secondary bootloader (bootcode.bin) only operates

on some of these and doesn’t comprehend the full syntax that the tertiary bootloader does (for instance, the secondary bootloader won’t handle
includes).

23 https://datatracker.ietf.org/doc/html/rfc2347.html
24 https://datatracker.ietf.org/doc/html/rfc2347.html
25 https://datatracker.ietf.org/doc/html/rfc2348.html
26 https://datatracker.ietf.org/doc/html/rfc2349.html
27 https://datatracker.ietf.org/doc/html/rfc7440.html
28 https://datatracker.ietf.org/doc/html/rfc2348.html
29 https://datatracker.ietf.org/doc/html/rfc2349.html

14 Chapter 4. Explanations

https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#TFTP_IP
https://datatracker.ietf.org/doc/html/rfc2347.html
https://datatracker.ietf.org/doc/html/rfc2347.html
https://datatracker.ietf.org/doc/html/rfc2348.html
https://datatracker.ietf.org/doc/html/rfc2349.html
https://datatracker.ietf.org/doc/html/rfc2349.html
https://datatracker.ietf.org/doc/html/rfc7440.html
https://datatracker.ietf.org/doc/html/rfc2348.html
https://datatracker.ietf.org/doc/html/rfc2349.html

nobodd 0.4 Documentation, Release 0.4

transfer after the initial packet, then immediately restarts it. My best guess is that it allocates the RAM for the transfer
after the termination, then restarts it (though why it does this is a bit of a mystery as it could allocate the space and
continue the transfer, since the OACK packet doesn’t contain any of the file data itself).
Sadly, the “windowsize” extension (RFC 744030) is not yet implemented which means the Pi’s netboot, up to the
kernel, is quite slow compared to other methods.

4.1.3 Kernel

The kernel is now running with the configured command line, and (optionally) the address of an initial ramdisk
(initramfs) as the root file-system. The initramfs is expected to contain the relevant kernel modules, and client binaries
to talk to whatever network server will provide the root file-system.
Traditionally on the Raspberry Pi, this has meant NFS31. However, it may also be NBD32 (as served by
nbd-server(1)) or iSCSI33 (as served by iscsid(8)). Typically, the init process loaded from the ker-
nel’s initramfs will dissect the kernel’s command line to determine the location of the root file-system, and mount it
using the appropriate utilities.
In the case of nbd-server(1) the following items in the kernel command line are crucial:

• ip=dhcp tells the kernel that it should request an IP address via DHCP (the Pi’s bootloader cannot pass
network state to the kernel, so this must be re-done)

• nbdroot=HOST/SHARE tells the kernel that it should open “SHARE” on the NBD server at HOST. This
will form the block device /dev/nbd0

• root=/dev/nbd0p2 tells the kernel that the root file-system is on the second partition of the block device

30 https://datatracker.ietf.org/doc/html/rfc7440.html
31 https://en.wikipedia.org/wiki/Network_File_System
32 https://en.wikipedia.org/wiki/Network_block_device
33 https://en.wikipedia.org/wiki/ISCSI

4.1. Netboot on the Pi 15

https://datatracker.ietf.org/doc/html/rfc7440.html
https://en.wikipedia.org/wiki/Network_File_System
https://en.wikipedia.org/wiki/Network_block_device
https://en.wikipedia.org/wiki/ISCSI

nobodd 0.4 Documentation, Release 0.4

16 Chapter 4. Explanations

CHAPTER

FIVE

CLI REFERENCE

The following chapters document the command line utilities included in nobodd:

5.1 nobodd-prep

Customizes an OS image to prepare it for netbooting via TFTP. Specifically, this expands the image to a specified size
(the assumption being the image is a copy of a minimally sized template image), then updates the kernel command
line on the boot partition to point to an NBD server.

5.1.1 Synopsis

usage: nobodd-prep [-h] [--version] [-s SIZE] [--nbd-host HOST]
[--nbd-name NAME] [--cmdline NAME]
[--boot-partition NUM] [--root-partition NUM]
[-C PATH] [-R PATH] image

5.1.2 Options

image

The target image to customize
-h, --help

show the help message and exit
--version

show program’s version number and exit
-s SIZE, --size SIZE

The size to expand the image to; default: 16GB
--nbd-host HOST

The hostname of the nbd server to connect to for the root device; defaults to the local machine’s FQDN
--nbd-name NAME

The name of the nbd share to use as the root device; defaults to the stem of the image name
--cmdline NAME

The name of the file containing the kernel command line on the boot partition; default: cmdline.txt
--boot-partition NUM

Which partition is the boot partition within the image; default is the first FAT partition (identified by partition
type) found in the image

17

nobodd 0.4 Documentation, Release 0.4

--root-partition NUM

Which partition is the root partition within the image default is the first non-FAT partition (identified by par-
tition type) found in the image

-C PATH, --copy PATH

Copy the specified file or directory into the boot partition. This may be given multiple times to specify multiple
items to copy

-R PATH, --remove PATH

Delete the specified file or directory within the boot partition. This may be given multiple times to specify
multiple items to delete

--serial HEX

Defines the serial number of the Raspberry Pi that will be served this image. When this option is given, a board
configuration compatible with nobodd-tftpd may be output with --tftpd-conf (page 18)

--tftpd-conf FILE

If specified, write a board configuration compatible with nobodd-tftpd to the specified file; requires
--serial (page 18) to be given. If “-” is given, output is written to stdout.

--nbd-conf FILE

If specified, write a share configuration compatible with nbd-server(1) to the specified file. If “-” is given,
output is written to stdout.

5.1.3 Usage

Typically nobodd-prep is called with a base OS image. For example, if ubuntu-24.04-server.img.xz is
the Ubuntu 24.04 Server for Raspberry image, we would decompress it (we can only work on uncompressed images),
use the tool to expand it to a reasonable disk size (e.g. 16GB like an SD card), and customize the kernel command
line to look for the rootfs on our NBD server:

$ ls -l ubuntu-24.04-server.img.xz
-rw-rw-r-- 1 dave dave 1189280360 Oct 12 00:44 ubuntu-24.04-server.img.xz
$ unxz ubuntu-24.04-server.img.xz
$ ls -l ubuntu-24.04-server.img
-rw-rw-r-- 1 dave dave 3727687680 Oct 12 00:44 ubuntu-24.04-server.img
$ fdisk -l ubuntu-24.04-server.img
Disk ubuntu-24.04-server.img: 3.47 GiB, 3727687680 bytes, 7280640 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x1634ec00

Device Boot Start End Sectors Size Id Type
ubuntu-24.04-server.img1 * 2048 1050623 1048576 512M c W95 FAT32 (LBA)
ubuntu-24.04-server.img2 1050624 7247259 6196636 3G 83 Linux
$ mkdir mnt
$ sudo mount -o loop,offset=$((2048*512)),sizelimit=$((1048576*512)) ubuntu-24.04-
↪→server.img mnt/
[sudo] Password:
$ cat mnt/cmdline.txt
console=serial0,115200 multipath=off dwc_otg.lpm_enable=0 console=tty1␣
↪→root=LABEL=writable rootfstype=ext4 rootwait fixrtc
$ sudo umount mnt/
$ nobodd-prep --size 16GB ubuntu-24.04-server.img
$ ls -l ubuntu-24.04-server.img --nbd-host myserver --nbd-name ubuntu
-rw-rw-r-- 1 dave dave 17179869184 Feb 27 13:11 ubuntu-24.04-server.img
$ sudo mount -o loop,offset=$((2048*512)),sizelimit=$((1048576*512)) ubuntu-24.04-
↪→server.img mnt/

(continues on next page)

18 Chapter 5. CLI Reference

nobodd 0.4 Documentation, Release 0.4

(continued from previous page)
[sudo] Password:
$ cat mnt/cmdline.txt
ip=dhcp nbdroot=myserver/ubuntu root=/dev/nbd0p2 console=serial0,115200␣
↪→multipath=off dwc_otg.lpm_enable=0 console=tty1 rootfstype=ext4 rootwait fixrtc
$ sudo umount mnt/

Note, the only reason we are listing partitions and mounting the boot partition above is to demonstrate the change to
the kernel command line in cmdline.txt. Ordinarily, usage of nobodd-prep is as simple as:

$ unxz ubuntu-24.04-server.img.xz
$ nobodd-prep --size 16GB ubuntu-24.04-server.img

Typically nobodd-prep will detect the boot and root partitions of the image automatically. The boot partition is
defined as the first partition that has a FAT partition type39 (on MBR-partitioned40 images), or Basic Data41 or EFI
System42 partition type (on GPT-partitioned43 images), which contains a valid FAT file-system (the script tries to
determine the FAT-type of the contained file-system, and only counts those partitions on which it can determine a
valid FAT-type).
The root partition is the exact opposite; it is defined as the first partition that doesn’t have a FAT partition type44
(on MBR-partitioned45 images), or Basic Data46 or EFI System47 partition type (on GPT-partitioned48 images),
which contains something other than a valid FAT file-system (again, the script tries to determine the FAT-type of the
contained file-system, and only counts those partitions on which it cannot determine a valid FAT-type).
There may be images for which these simplistic definitions do not work. For example, images derived from a
NOOBS/PINN49 install may well have several boot partitions for different installed OS’. In this case the boot or
root partition (or both) may be specified manually on the command line:

$ fdisk -l pinn-test.img
Disk pinn-test.img: 29.72 GiB, 31914983424 bytes, 62333952 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x2e779525

Device Boot Start End Sectors Size Id Type
pinn-test.img1 8192 137215 129024 63M e W95 FAT16 (LBA)
pinn-test.img2 137216 62333951 62196736 29.7G 5 Extended
pinn-test.img5 139264 204797 65534 32M 83 Linux
pinn-test.img6 204800 464895 260096 127M c W95 FAT32 (LBA)
pinn-test.img7 466944 4661247 4194304 2G 83 Linux
pinn-test.img8 4669440 5193727 524288 256M 83 Linux
pinn-test.img9 5201920 34480125 29278206 14G 83 Linux
pinn-test.img10 34480128 34998271 518144 253M c W95 FAT32 (LBA)
pinn-test.img11 35004416 62333951 27329536 13G 83 Linux
$ nobodd-prep --boot-partition 10 --root-partition 11 pinn-test.img

nobodd-prep also includes several facilities for customizing the boot partition beyond re-writing the kernel’s
cmdline.txt. Specifically, the --remove (page 18) and --copy (page 18) options.
The --remove (page 18) option can be given multiple times, and tells nobodd-prep to remove the specified
files or directories from the boot partition. The --copy (page 18) option can also be given multiple times, and tells

39 https://en.wikipedia.org/wiki/Partition_type
40 https://en.wikipedia.org/wiki/Master_boot_record
41 https://en.wikipedia.org/wiki/Microsoft_basic_data_partition
42 https://en.wikipedia.org/wiki/EFI_system_partition
43 https://en.wikipedia.org/wiki/GUID_Partition_Table
44 https://en.wikipedia.org/wiki/Partition_type
45 https://en.wikipedia.org/wiki/Master_boot_record
46 https://en.wikipedia.org/wiki/Microsoft_basic_data_partition
47 https://en.wikipedia.org/wiki/EFI_system_partition
48 https://en.wikipedia.org/wiki/GUID_Partition_Table
49 https://github.com/procount/pinn

5.1. nobodd-prep 19

https://en.wikipedia.org/wiki/Partition_type
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Microsoft_basic_data_partition
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://en.wikipedia.org/wiki/Partition_type
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Microsoft_basic_data_partition
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://github.com/procount/pinn

nobodd 0.4 Documentation, Release 0.4

nobodd-prep to copy the specified files or directories into the root of the boot partition. In both cases, directories
that are specified are removed or copied recursively.
The --copy (page 18) option is particularly useful for overwriting the cloud-init50 seeds on the boot partition of
Ubuntu Server images, in case you want to provide an initial network configuration, user setup, or list of packages to
install on first boot:

$ cat user-data
chpasswd:

expire: true
users:
- name: ubuntu
password: raspberry
type: text

ssh_pwauth: false

package_update: true
package_upgrade: true
packages:
- avahi-daemon
$ nobodd-prep --copy user-data ubuntu-24.04-server.img

There is no need to --remove (page 18) files you wish to --copy (page 18); the latter option will overwrite where
necessary. The exception to this is copying directories; if you are copying a directory that already exists in the boot
partition, the new content will be merged with the existing content. Files under the directory that share a name will
be overwritten, files that do not will be left in place. If you wish to replace the directory wholesale, specify it with
--remove (page 18) as well.
The ordering of options on the command line does not affect the order of operations in the utility. The order of
operations in nobodd-prep is strictly as follows:

1. Detect partitions, if necessary
2. Re-size the image, if necessary
3. Remove all items on the boot partition specified by --remove (page 18)
4. Copy all items specified by --copy (page 18) into the boot partition
5. Re-write the root= option in the cmdline.txt file

This ordering is deliberate, firstly to ensure directories can be replaced (as noted above), and secondly to ensure
cmdline.txt can be customized by --copy (page 18) prior to the customization performed by the utility.

5.1.4 See Also

nobodd-tftpd (page 21), nbd-server(1)

5.1.5 Bugs

Please report bugs at: https://github.com/waveform80/nobodd/issues
50 https://cloudinit.readthedocs.io/en/latest/

20 Chapter 5. CLI Reference

https://cloudinit.readthedocs.io/en/latest/
https://github.com/waveform80/nobodd/issues

nobodd 0.4 Documentation, Release 0.4

5.2 nobodd-tftpd

A read-only TFTP server capable of reading FAT boot partitions from within image files or devices. Intended to be
paired with a block-device service (e.g. NBD) for netbooting Raspberry Pis.

5.2.1 Synopsis

usage: nobodd-tftpd [-h] [--version] [--listen ADDR] [--port PORT]
[--board SERIAL,FILENAME[,PART[,IP]]]

5.2.2 Options

-h, --help

show the help message and exit
--version

show program’s version number and exit
--board SERIAL,FILENAME[,PART[,IP]]

can be specified multiple times to define boards which are to be served boot images over TFTP; if PART is
omitted the default is 1; if IP is omitted the IP address will not be checked

--listen ADDR

the address on which to listen for connections (default: “::” for all addresses)
--port PORT

the port on which to listen for connections (default: “tftp” which is port 69)

5.2.3 Configuration

nobodd-tftpd can be configured via the command line, or from several configuration files. These are structured
as INI-style files with bracketed [sections] containing key=value lines, and optionally #-prefixed comments.
The configuration files which are read, and the order they are consulted is as follows:

1. /etc/nobodd/nobodd.conf
2. /usr/local/etc/nobodd/nobodd.conf
3. $XDG_CONFIG_HOME/nobodd/nobodd.conf (where $XDG_CONFIG_HOME defaults to ~/.

config if unset)
Later files override settings from files earlier in this order.
The configuration file may contain a [tftp] section which may contain the following values:
listen

This is equivalent to the --listen (page 21) parameter and specifies the address(es) on which the server
will listen for incoming TFTP connections.

port
This is equivalent to the --port (page 21) parameter and specifies the UDP port on which the server will
listen for incoming TFTP connections. Please note that only the initial TFTP packet will arrive on this port.
Each “connection” is allocated its own ephemeral port51 on the server and all subsequent packets will use this
ephemeral port.

51 https://en.wikipedia.org/wiki/Ephemeral_port

5.2. nobodd-tftpd 21

https://en.wikipedia.org/wiki/Ephemeral_port

nobodd 0.4 Documentation, Release 0.4

includedir
If this is specified, it provides the name of a directory which will be scanned for files matching the pattern
*.conf. Any files found matching will be read as additional configuration files, in sorted filename order.

For example:

[tftp]
listen = 192.168.0.0/16
port = tftp
includedir = /etc/nobodd/conf.d

For each image the TFTP server is expected to serve to a Raspberry Pi, a [board:SERIAL] section should be
defined. Here, “SERIAL” should be replaced by the serial number of the Raspberry Pi. The serial number can be
found in the output of cat /proc/cpuinfo at runtime. For example:

$ grep ^Serial /proc/cpuinfo
Serial : 100000001234abcd

If the serial number starts with 10000000 (as in the example above), exclude the initial one and all leading zeros. So
the above Pi has a serial number of 1234abcd (in hexadecimal). Within the section the following values are valid:
image

Specifies the full path to the operating system image to serve to the specified Pi, presumably prepared with
nobodd-prep.

partition
Optionally specifies the number of the boot partition. If this is not specified it defaults to 1.

ip
Optionally limits serving any files from this image unless the IP address of the client matches. If this is not
specified, any IP address may retrieve files from this share.

For example:

[board:1234abcd]
image = /srv/images/ubuntu-24.04-server.img
partition = 1
ip = 192.168.0.5

In practice, what this means is that requests from a client with the IP address “192.168.0.5”, for files under the
path “1234abcd/”, will be served from the FAT file-system on partition 1 of the image stored at /srv/images/
ubuntu-24.04-server.img.
Such definitions can be produced by nobodd-prep when it is provided with the nobodd-prep --serial
(page 18) option.
Boardsmay also be defined on the command-line with the--board (page 21) option. These definitions will augment
(and override, where the serial number is identical) those definitions provided by the configuration files.

5.2.4 Systemd/Inetd Usage

The server may inherit its listening socket from a managing process. In the case of inetd(8) where the listening
socket is traditionally passed as stdin (fd 0), pass “stdin” as the value of --listen (page 21) (or the listen option
within the [tftp] section of the configuration file).
In the case of systemd(1), where the listening socket(s) are passed via the environment, specify “systemd” as the
value of --listen (page 21) (or the listen option within the [tftp] section of the configuration file) and
the service will expect to find a single socket passed in LISTEN_FDS. This will happen implicitly if the service is
declared as socket-activated. However, the service must not use Accept=yes as the TFTP protocol is connection-
less. The example units provided in the source code demonstrate using socket-activation with the server.
In both cases, the service manager sets the port that the service will listen on, so the --port (page 21) option (and
the port option in the [tftp] section of the configuration file) is silently ignored.

22 Chapter 5. CLI Reference

nobodd 0.4 Documentation, Release 0.4

5.2.5 See Also

nobodd-prep (page 17), nbd-server(1)

5.2.6 Bugs

Please report bugs at: https://github.com/waveform80/nobodd/issues

5.2. nobodd-tftpd 23

https://github.com/waveform80/nobodd/issues

nobodd 0.4 Documentation, Release 0.4

24 Chapter 5. CLI Reference

CHAPTER

SIX

API REFERENCE

In additional to being a service, nobodd can also be used as an API from Python to access disk images, determining
their partitioning style, enumerating the available partitions, and manipulating FAT file-systems (either from within
a disk image, or just standalone). It can also be used as the basis of a generic TFTP service.
The following sections list the modules by their topic.

6.1 Disk Images

The nobodd.disk.DiskImage (page 26) class is the primary entry-point for dealing with disk images.

6.1.1 nobodd.disk

Thenobodd.disk (page 25) module contains theDiskImage (page 26) class which is the primary entry point for
handling disk images. Constructed with a filename (or file-like object which provides a valid fileno()52 method),
the class will attempt to determine if MBR53 or GPT54 style partitioning is in use. The DiskImage.partitions
(page 26) attribute can then be queried to enumerate, or access the data of, individual partitions:

>>> from nobodd.disk import DiskImage
>>> img = DiskImage('gpt_disk.img')
>>> img
<DiskImage file=<_io.BufferedReader name='gpt_disk.img'> style='gpt'␣
↪→signature=UUID('733b49a8-6918-4e44-8d3d-47ed9b481335')>
>>> img.style
'gpt'
>>> len(img.partitions)
4
>>> img.partitions
DiskPartitionsGPT({
1: <DiskPartition size=8388608 label='big-part' type=UUID('ebd0a0a2-b9e5-4433-87c0-
↪→68b6b72699c7')>,
2: <DiskPartition size=204800 label='little-part1' type=UUID('ebd0a0a2-b9e5-4433-
↪→87c0-68b6b72699c7')>,
5: <DiskPartition size=4194304 label='medium-part' type=UUID('ebd0a0a2-b9e5-4433-
↪→87c0-68b6b72699c7')>,
6: <DiskPartition size=204800 label='little-part2' type=UUID('ebd0a0a2-b9e5-4433-
↪→87c0-68b6b72699c7')>,
})

Note that partitions are numbered from 1 and that, especially in the case of MBR55, partition numbers may not
be contiguous: primary partitions are numbered 1 through 4, but logical partitions may only exist in one primary
partition, and are numbered from 5. Hence it is entirely valid to have partitions 1, 5, and 6:

52 https://docs.python.org/3.12/library/io.html#io.IOBase.fileno
53 https://en.wikipedia.org/wiki/Master_boot_record
54 https://en.wikipedia.org/wiki/GUID_Partition_Table
55 https://en.wikipedia.org/wiki/Master_boot_record

25

https://docs.python.org/3.12/library/io.html#io.IOBase.fileno
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://en.wikipedia.org/wiki/Master_boot_record

nobodd 0.4 Documentation, Release 0.4

>>> from nobodd.disk import DiskImage
>>> img = DiskImage('test-ebr.img')
>>> img.style
'mbr'
>>> len(img.partitions)
3
>>> list(img.partitions.keys())
[1, 5, 6]
>>> img.partitions[1]
<DiskPartition size=536870912 label='Partition 1' type=12>
>>> img.partitions[5]
<DiskPartition size=536870912 label='Partition 5' type=131>
>>> img.partitions[6]
<DiskPartition size=1070596096 label='Partition 6' type=131>

GPT56 partition tables may also have non-contiguous numbering, although this is less common in practice. The
DiskPartition.data (page 27) attribute can be used to access the content of the partition as a buffer object
(see memoryview57).

DiskImage

class nobodd.disk.DiskImage(filename_or_obj, sector_size=512, access=1)
Represents a disk image, specified by filename_or_obj which must be a str58 or Path59 naming the file, or
a file-like object.
If a file-like object is provided, it must have a fileno60 method which returns a valid file-descriptor number
(the class uses mmap61 internally which requires a “real” file).
The disk image is expected to be partitioned with either an MBR62 partition table or a GPT63. The partitions
within the image can be enumerated with the partitions (page 26) attribute. The instance can (and should)
be used as a context manager; exiting the context will call the close() (page 26) method implicitly.
If specified, sector_size is the size of sectors (in bytes) within the disk image. This defaults to 512 bytes,
and should almost always be left alone. The access parameter controls the access used when constructing
the memory mapping. This defaults to mmap.ACCESS_READ for read-only access. If you wish to write
to file-systems within the disk image, change this to mmap.ACCESS_WRITE. You may also use mmap.
ACCESS_COPY for read-write mappings that don’t actually affect the underlying disk image.

Note: Please note that this library provides no means to re-partition disk images, just the ability to re-write
files within FAT partitions.

close()

Destroys the memory mapping used on the file provided. If the file was opened by this class, it will also
be closed. This method is idempotent and is implicitly called when the instance is used as a context
manager.

Note: All mappings derived from this one must be closed before calling this method. By far the easiest
means of arranging this is to consistently use context managers with all instances derived from this.

property partitions

Provides access to the partitions in the image as a Mapping64 of partition number to DiskPartition
(page 27) instances.

56 https://en.wikipedia.org/wiki/GUID_Partition_Table
57 https://docs.python.org/3.12/library/stdtypes.html#memoryview

26 Chapter 6. API Reference

https://en.wikipedia.org/wiki/GUID_Partition_Table
https://docs.python.org/3.12/library/stdtypes.html#memoryview
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/io.html#io.IOBase.fileno
https://docs.python.org/3.12/library/mmap.html#mmap.mmap
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://docs.python.org/3.12/library/collections.abc.html#collections.abc.Mapping

nobodd 0.4 Documentation, Release 0.4

Warning: Disk partition numbers start from 1 and need not be contiguous, or ordered.
For example, it is perfectly valid to have partition 1 occur later on disk than partition 2, for partition
3 to be undefined, and partition 4 to be defined between partition 1 and 2. The partition number is
essentially little more than an arbitrary key.
In the case ofMBR partition tables, it is particularly common to have missing partition numbers as the
primary layout only permits 4 partitions. Hence, the “extended partitions” scheme numbers partitions
from 5. However, if not all primary partitions are defined, there will be a “jump” from, say, partition
2 to partition 5.

property signature

The identifying signature of the disk. In the case of a GPT partitioned disk, this is a UUID65. In the case
of MBR, this is a 32-bit integer number.

property style

The style of partition table in use on the disk image. Will be one of the strings, ‘gpt’ or ‘mbr’.

DiskPartition

class nobodd.disk.DiskPartition(mem, label, type)
Represents an individual disk partition within a DiskImage (page 26).
Instances of this class are returned as the values of the mapping provided by DiskImage.partitions
(page 26). Instances can (and should) be used as a context manager to implicitly close references upon exiting
the context.
close()

Release the internal memoryview66 reference. This method is idempotent and is implicitly called when
the instance is used as a context manager.

property data

Returns a buffer (specifically, a memoryview67) covering the contents of the partition in the owning
DiskImage (page 26).

property label

The label of the partition. GPT68 partitions may have a 36 character unicode label. MBR69 partitions
do not have a label, so the string “Partition {num}” will be used instead (where {num} is the partition
number).

property type

The type of the partition. For GPT70 partitions, this will be a uuid.UUID71 instance. For MBR72

partitions, this will be an int73.
58 https://docs.python.org/3.12/library/stdtypes.html#str
59 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
60 https://docs.python.org/3.12/library/io.html#io.IOBase.fileno
61 https://docs.python.org/3.12/library/mmap.html#mmap.mmap
62 https://en.wikipedia.org/wiki/Master_boot_record
63 https://en.wikipedia.org/wiki/GUID_Partition_Table
64 https://docs.python.org/3.12/library/collections.abc.html#collections.abc.Mapping
65 https://docs.python.org/3.12/library/uuid.html#uuid.UUID
66 https://docs.python.org/3.12/library/stdtypes.html#memoryview
67 https://docs.python.org/3.12/library/stdtypes.html#memoryview
68 https://en.wikipedia.org/wiki/GUID_Partition_Table
69 https://en.wikipedia.org/wiki/Master_boot_record
70 https://en.wikipedia.org/wiki/GUID_Partition_Table
71 https://docs.python.org/3.12/library/uuid.html#uuid.UUID
72 https://en.wikipedia.org/wiki/Master_boot_record
73 https://docs.python.org/3.12/library/functions.html#int

6.1. Disk Images 27

https://docs.python.org/3.12/library/uuid.html#uuid.UUID
https://docs.python.org/3.12/library/stdtypes.html#memoryview
https://docs.python.org/3.12/library/stdtypes.html#memoryview
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://docs.python.org/3.12/library/uuid.html#uuid.UUID
https://en.wikipedia.org/wiki/Master_boot_record
https://docs.python.org/3.12/library/functions.html#int

nobodd 0.4 Documentation, Release 0.4

Internal Classes

You should not need to use these classes directly; they will be instantiated automatically when querying the
DiskImage.partitions (page 26) attribute according to the detected table format.
class nobodd.disk.DiskPartitionsGPT(mem, sector_size=512)

Provides a Mapping74 from partition number to DiskPartition (page 27) instances for a GPT75.
mem is the buffer covering the whole disk image. sector_size specifies the sector size of the disk image, which
should almost always be left at the default of 512 bytes.

class nobodd.disk.DiskPartitionsMBR(mem, sector_size=512)
Provides a Mapping76 from partition number to DiskPartition (page 27) instances for a MBR77.
mem is the buffer covering the whole disk image. sector_size specifies the sector size of the disk image, which
should almost always be left at the default of 512 bytes.

6.1.2 nobodd.gpt

Defines the data structures used by GUID Partition Tables78. You should never need these directly; use the nobodd.
disk.DiskImage (page 26) class instead.

Data Structures

class nobodd.gpt.GPTHeader(signature, revision, header_size, header_crc32, current_lba, backup_lba,
first_usable_lba, last_usable_lba, disk_guid, part_table_lba,
part_table_size, part_entry_size, part_table_crc32)

A namedtuple()79 representing the fields of the GPT header80.
classmethod from_buffer(buf, offset=0)

Construct a GPTHeader (page 28) from the specified offset (which defaults to 0) in the buffer protocol
object, buf.

classmethod from_bytes(s)
Construct a GPTHeader (page 28) from the byte-string s.

class nobodd.gpt.GPTPartition(type_guid, part_guid, first_lba, last_lba, flags, part_label)
A namedtuple()81 representing the fields of a GPT entry82.
classmethod from_buffer(buf, offset=0)

Construct a GPTPartition (page 28) from the specified offset (which defaults to 0) in the buffer
protocol object, buf.

classmethod from_bytes(s)

Construct a GPTPartition (page 28) from the byte-string s.
74 https://docs.python.org/3.12/library/collections.abc.html#collections.abc.Mapping
75 https://en.wikipedia.org/wiki/GUID_Partition_Table
76 https://docs.python.org/3.12/library/collections.abc.html#collections.abc.Mapping
77 https://en.wikipedia.org/wiki/Master_boot_record
78 https://en.wikipedia.org/wiki/GUID_Partition_Table
79 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
80 https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_table_header_(LBA_1)
81 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
82 https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_entries_(LBA_2%E2%80%9333)

28 Chapter 6. API Reference

https://docs.python.org/3.12/library/collections.abc.html#collections.abc.Mapping
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://docs.python.org/3.12/library/collections.abc.html#collections.abc.Mapping
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_table_header_(LBA_1)
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_entries_(LBA_2%E2%80%9333)

nobodd 0.4 Documentation, Release 0.4

6.1.3 nobodd.mbr

Defines the data structures used by the Master Boot Record83 (MBR) partitioning style. You should never need these
directly; use the nobodd.disk.DiskImage (page 26) class instead.

Data Structures

class nobodd.mbr.MBRHeader(zero, physical_drive, seconds, minutes, hours, disk_sig, copy_protect,
partition_1, partition_2, partition_3, partition_4, boot_sig)

A namedtuple()84 representing the fields of the MBR header85.
classmethod from_buffer(buf, offset=0)

Construct a MBRHeader (page 29) from the specified offset (which defaults to 0) in the buffer protocol
object, buf.

classmethod from_bytes(s)

Construct a MBRHeader (page 29) from the byte-string s.
property partitions

Returns a sequence of the partitions defined by the header. This is always 4 elements long, and not all
elements are guaranteed to be valid, or in order on the disk.

class nobodd.mbr.MBRPartition(status, first_chs, part_type, last_chs, first_lba, part_size)
A namedtuple()86 representing the fields of an MBR partition entry87.
classmethod from_buffer(buf, offset=0)

Construct a MBRPartition (page 29) from the specified offset (which defaults to 0) in the buffer
protocol object, buf.

classmethod from_bytes(s)
Construct a MBRPartition (page 29) from the byte-string s.

6.2 FAT Filesystem

The nobodd.fs.FatFileSystem (page 30) class is the primary entry-point for handling FAT file-systems.

6.2.1 nobodd.fs

The nobodd.fs (page 29) module contains the FatFileSystem (page 30) class which is the primary entry point
for reading FAT file-systems. Constructed with a buffer object representing a memory mapping of the file-system,
the class will determine whether the format is FAT12, FAT16, or FAT32. The root (page 31) attribute provides a
Path-like object representing the root directory of the file-system.

>>> from nobodd.disk import DiskImage
>>> from nobodd.fs import FatFileSystem
>>> img = DiskImage('test-gpt.img')
>>> fs = FatFileSystem(img.partitions[1].data)
>>> fs.fat_type
'fat16'
>>> fs.root
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/')

83 https://en.wikipedia.org/wiki/Master_boot_record
84 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
85 https://en.wikipedia.org/wiki/Master_boot_record#Sector_layout
86 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
87 https://en.wikipedia.org/wiki/Master_boot_record#Partition_table_entries

6.2. FAT Filesystem 29

https://en.wikipedia.org/wiki/Master_boot_record
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Master_boot_record#Sector_layout
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Master_boot_record#Partition_table_entries

nobodd 0.4 Documentation, Release 0.4

Warning: At the time of writing, the implementation is strictly not thread-safe. Attempting to write to the file-
system from multiple threads (whether in separate instances or not) is likely to result in corruption. Attempting to
write to the file-system from one thread, while reading from another will result in undefined behaviour including
incorrect reads.

Warning: The implementation will not handle certain “obscure” extensions to FAT, such as sub-directory style
roots on FAT-12/16. It will attempt to warn about these and abort if they are found.

FatFileSystem

class nobodd.fs.FatFileSystem(mem, atime=False, encoding='iso-8859-1')
Represents a FAT88 file-system, contained at the start of the buffer object mem.
This class supports the FAT-12, FAT-16, and FAT-32 formats, and will automatically determine which to use
from the headers found at the start of mem. The type in use may be queried from fat_type (page 38). Of
primary use is the root (page 31) attribute which provides a FatPath (page 42) instance representing the
root directory of the file-system.
Instances can (and should) be used as a context manager; exiting the context will call the close() (page 30)
method implicitly. If certain header bits are set, DamagedFileSystem (page 33) and DirtyFileSys-
tem (page 33) warnings may be generated upon opening.
If atime is False89, the default, then accesses to files will not update the atime field in file meta-data (when
the underlying mem mapping is writable). Finally, encoding specifies the character set used for decoding and
encoding DOS short filenames.
close()

Releases the memory references derived from the buffer the instance was constructed with. This method
is idempotent.

open_dir(cluster)
Opens the sub-directory in the specified cluster, returning a FatDirectory (page 35) instance repre-
senting it.

Warning: This method is intended for internal use by the FatPath (page 42) class.

open_entry(index, entry, mode='rb')
Opens the specified entry, which must be a DirectoryEntry (page 40) instance, which must be a
member of index, an instance of FatDirectory (page 35). Returns a FatFile (page 32) instance
associated with the specified entry. This permits writes to the file to be properly recorded in the corre-
sponding directory entry.

Warning: This method is intended for internal use by the FatPath (page 42) class.

open_file(cluster, mode='rb')
Opens the file at the specified cluster, returning a FatFile (page 32) instance representing it with the
specified mode. Note that the FatFile (page 32) instance returned by this method has no directory
entry associated with it.

Warning: This method is intended for internal use by the FatPath (page 42) class, specifically
for “files” underlying the sub-directory structure which do not have an associated size (other than that
dictated by their FAT chain of clusters).

30 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://docs.python.org/3.12/library/constants.html#False

nobodd 0.4 Documentation, Release 0.4

property atime

If the underlying mapping is writable, then atime (last access time) will be updated upon reading the
content of files, when this property is True90 (the default is False91).

property clusters

A FatClusters (page 35) sequence representing the clusters containing the data stored in the file-
system.

Warning: This attribute is intended for internal use by the FatFile (page 32) class, but may be
useful for low-level exploration or manipulation of FAT file-systems.

property fat

A FatTable (page 33) sequence representing the FAT table itself.

Warning: This attribute is intended for internal use by the FatFile (page 32) class, but may be
useful for low-level exploration or manipulation of FAT file-systems.

property fat_type

Returns a str92 indicating the type of FAT93 file-system present. Returns one of “fat12”, “fat16”, or
“fat32”.

property label

Returns the label from the header of the file-system. This is an ASCII string up to 11 characters long.
property readonly

Returns True94 if the underlying buffer is read-only.
property root

Returns a FatPath (page 42) instance (a Path95-like object) representing the root directory of the
FAT file-system. For example:

from nobodd.disk import DiskImage
from nobodd.fs import FatFileSystem

with DiskImage('test.img') as img:
with FatFileSystem(img.partitions[1].data) as fs:

print('ls /')
for p in fs.root.iterdir():

print(p.name)

Note: This is intended to be the primary entry-point for querying and manipulating the file-system at
the high level. Only use the fat (page 31) and clusters (page 31) attributes, and the various “open”
methods if you want to explore or manipulate the file-system at a low level.

property sfn_encoding

The encoding used for short (8.3) filenames. This defaults to “iso-8859-1” but unfortunately there’s no
way of determining the correct codepage for these.

88 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
89 https://docs.python.org/3.12/library/constants.html#False
90 https://docs.python.org/3.12/library/constants.html#True
91 https://docs.python.org/3.12/library/constants.html#False
92 https://docs.python.org/3.12/library/stdtypes.html#str
93 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
94 https://docs.python.org/3.12/library/constants.html#True
95 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path

6.2. FAT Filesystem 31

https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path

nobodd 0.4 Documentation, Release 0.4

FatFile

class nobodd.fs.FatFile(fs, start, mode='rb', index=None, entry=None)
Represents an open file from a FatFileSystem (page 30).
You should never need to construct this instance directly. Instead it (or wrapped variants of it) is returned by
the open() (page 44) method of FatPath (page 42) instances. For example:

from nobodd.disk import DiskImage
from nobodd.fs import FatFileSystem

with DiskImage('test.img') as img:
with FatFileSystem(img.partitions[1].data) as fs:

path = fs.root / 'bar.txt'
with path.open('r', encoding='utf-8') as f:

print(f.read())

Instances can (and should) be used as context managers to implicitly close references upon exiting the context.
Instances are readable and seekable, and writable, depending on their opening mode and the nature of the
underlying FatFileSystem (page 30).
As a derivative of io.RawIOBase96, all the usual I/O methods should be available.
close()

Flush and close the IO object.
This method has no effect if the file is already closed.

classmethod from_cluster(fs, start, mode='rb')
Construct a FatFile (page 32) from a FatFileSystem (page 30), fs, and a start cluster. The
optional mode is equivalent to the built-in open()97 function.
Files constructed via this method do not have an associated directory entry. As a result, their size is
assumed to be the full size of their cluster chain. This is typically used for the “file” backing a FatSub-
Directory (page 37).

Warning: This method is intended for internal use by the FatPath (page 42) class.

classmethod from_entry(fs, index, entry, mode='rb')
Construct aFatFile (page 32) from aFatFileSystem (page 30), fs, aFatDirectory (page 35),
index, and a DirectoryEntry (page 40), entry. The optional mode is equivalent to the built-in
open()98 function.
Files constructed via this method have an associated directory entry which will be updated if/when reads
or writes occur (updating atime, mtime, and size fields).

Warning: This method is intended for internal use by the FatPath (page 42) class.

readable()

Return whether object was opened for reading.
If False, read() will raise OSError.

readall()

Read until EOF, using multiple read() call.
seek(pos, whence=0)

Change stream position.

32 Chapter 6. API Reference

https://docs.python.org/3.12/library/io.html#io.RawIOBase
https://docs.python.org/3.12/library/functions.html#open
https://docs.python.org/3.12/library/functions.html#open

nobodd 0.4 Documentation, Release 0.4

Change the stream position to the given byte offset. The offset is interpreted relative to the position
indicated by whence. Values for whence are:
• 0 – start of stream (the default); offset should be zero or positive
• 1 – current stream position; offset may be negative
• 2 – end of stream; offset is usually negative

Return the new absolute position.
seekable()

Return whether object supports random access.
If False, seek(), tell() and truncate() will raise OSError. This method may need to do a test seek().

truncate(size=None)

Truncate file to size bytes.
File pointer is left unchanged. Size defaults to the current IO position as reported by tell(). Returns the
new size.

writable()

Return whether object was opened for writing.
If False, write() will raise OSError.

Exceptions and Warnings

exception nobodd.fs.FatWarning

Base class for warnings issued by FatFileSystem (page 30).
exception nobodd.fs.DirtyFileSystem

Raised when opening a FAT file-system that has the “dirty” flag set in the second entry of the FAT.
exception nobodd.fs.DamagedFileSystem

Raised when opening a FAT file-system that has the I/O errors flag set in the second entry of the FAT.
exception nobodd.fs.OrphanedLongFilename

Raised when a LongFilenameEntry (page 40) is found with a mismatched checksum, terminal flag, out
of order index, etc. This usually indicates an orphaned entry as the result of a non-LFN aware file-system
driver manipulating a directory.

exception nobodd.fs.BadLongFilename

Raised when a LongFilenameEntry (page 40) is unambiguously corrupted, e.g. including a non-zero
cluster number, in a way that would not be caused by a non-LFN aware file-system driver.

Internal Classes and Functions

You should never need to interact with these classes directly; use FatFileSystem (page 30) instead. These
classes exist to enumerate and manipulate the FAT, and different types of root directory under FAT-12, FAT-16, and
FAT-32, and sub-directories (which are common across FAT types).
class nobodd.fs.FatTable

Abstract MutableSequence99 class representing the FAT table itself.
This is the basis for Fat12Table (page 34), Fat16Table (page 34), and Fat32Table (page 34). While
all the implementations are potentially mutable (if the underlying memory mapping is writable), only direct
replacement of FAT entries is valid. Insertion and deletion will raise TypeError100.

96 https://docs.python.org/3.12/library/io.html#io.RawIOBase
97 https://docs.python.org/3.12/library/functions.html#open
98 https://docs.python.org/3.12/library/functions.html#open

6.2. FAT Filesystem 33

https://docs.python.org/3.12/library/collections.abc.html#collections.abc.MutableSequence
https://docs.python.org/3.12/library/exceptions.html#TypeError

nobodd 0.4 Documentation, Release 0.4

A concrete class is constructed by FatFileSystem (page 30) (based on the type of FAT format found). The
chain() (page 34) method is used by FatFile (page 32) (and indirectly FatSubDirectory (page 37))
to discover the chain of clusters that make up a file (or sub-directory). The free() (page 34) method is used
by writable FatFile (page 32) instances to find the next free cluster to write to. The mark_free()
(page 34) and mark_end() (page 34) methods are used to mark a clusters as being free or as the terminal
cluster of a file.
chain(start)

Generator method which yields all the clusters in the chain starting at start.
free()

Generator that scans the FAT for free clusters, yielding each as it is found. Iterating to the end of this
generator raises OSError101 with the code ENOSPC (out of space).

abstract get_all(cluster)
Returns the value of cluster in all copies of the FAT, as a tuple102 (naturally, under normal circum-
stances, these should all be equal).

insert(cluster, value)
Raises TypeError103; the FAT length is immutable.

mark_end(cluster)
Marks cluster as the end of a chain. The value used to indicate the end of a chain is specific to the FAT
size.

mark_free(cluster)
Marks cluster as free (this simply sets cluster to 0 in the FAT).

class nobodd.fs.Fat12Table(mem, fat_size, info_mem=None)
Concrete child of FatTable (page 33) for FAT-12 file-systems.
min_valid = 2

max_valid = 4079

end_mark = 4095

get_all(cluster)
Returns the value of cluster in all copies of the FAT, as a tuple104 (naturally, under normal circum-
stances, these should all be equal).

class nobodd.fs.Fat16Table(mem, fat_size, info_mem=None)
Concrete child of FatTable (page 33) for FAT-16 file-systems.
min_valid = 2

max_valid = 65519

end_mark = 65535

get_all(cluster)

Returns the value of cluster in all copies of the FAT, as a tuple105 (naturally, under normal circum-
stances, these should all be equal).

class nobodd.fs.Fat32Table(mem, fat_size, info_mem=None)
Concrete child of FatTable (page 33) for FAT-32 file-systems.

99 https://docs.python.org/3.12/library/collections.abc.html#collections.abc.MutableSequence
100 https://docs.python.org/3.12/library/exceptions.html#TypeError
101 https://docs.python.org/3.12/library/exceptions.html#OSError
102 https://docs.python.org/3.12/library/stdtypes.html#tuple
103 https://docs.python.org/3.12/library/exceptions.html#TypeError
104 https://docs.python.org/3.12/library/stdtypes.html#tuple
105 https://docs.python.org/3.12/library/stdtypes.html#tuple

34 Chapter 6. API Reference

https://docs.python.org/3.12/library/exceptions.html#OSError
https://docs.python.org/3.12/library/stdtypes.html#tuple
https://docs.python.org/3.12/library/exceptions.html#TypeError
https://docs.python.org/3.12/library/stdtypes.html#tuple
https://docs.python.org/3.12/library/stdtypes.html#tuple

nobodd 0.4 Documentation, Release 0.4

min_valid = 2

max_valid = 268435439

end_mark = 268435455

free()

Generator that scans the FAT for free clusters, yielding each as it is found. Iterating to the end of this
generator raises OSError106 with the code ENOSPC (out of space).

get_all(cluster)
Returns the value of cluster in all copies of the FAT, as a tuple107 (naturally, under normal circum-
stances, these should all be equal).

class nobodd.fs.FatClusters(mem, cluster_size)
MutableSequence108 representing the clusters of the file-system itself.
While the sequence is mutable, clusters cannot be deleted or inserted, only read and (if the underlying buffer
is writable) re-written.
insert(cluster, value)

Raises TypeError109; the FS length is immutable.
property readonly

Returns True110 if the underlying buffer is read-only.
property size

Returns the size (in bytes) of clusters in the file-system.
class nobodd.fs.FatDirectory

An abstract MutableMapping111 representing a FAT directory112. The mapping is ostensibly from filename
to DirectoryEntry (page 40) instances, but there are several oddities to be aware of.
In VFAT, many files effectively have two filenames: the original DOS “short” filename (SFN hereafter) and the
VFAT “long” filename (LFN hereafter). All files have an SFN; any file may optionally have an LFN. The SFN
is stored in the DirectoryEntry (page 40) which records details of the file (mode, size, cluster, etc). The
optional LFN is stored in leading LongFilenameEntry (page 40) records.
Even when LongFilenameEntry (page 40) records do not precede a DirectoryEntry (page 40), the
file may still have an LFN that differs from the SFN in case only, recorded by flags in the DirectoryEntry
(page 40). Naturally, some files still only have one filename because the LFN doesn’t vary in case from the
SFN, e.g. the special directory entries “.” and “..”, and anything which conforms to original DOS naming rules
like “README.TXT”.
For the purposes of listing files, most FAT implementations (including this one) ignore the SFNs. Hence,
iterating over this mapping will not yield the SFNs as keys (unless the SFN is equal to the LFN), and they are
not counted in the length of the mapping. However, for the purposes of testing existence, opening, etc., FAT
implementations allow the use of SFNs. Hence, testing for membership, or manipulating entries via the SFN
will work with this mapping, and will implicitly manipulate the associated LFNs (e.g. deleting an entry via a
SFN key will also delete the associated LFN key).
In other words, if a file has a distinct LFN and SFN, it has two entries in the mapping (a “visible” LFN entry,
and an “invisible” SFN entry). Further, note that FAT is case retentive (for LFNs; SFNs are folded uppercase),
but not case sensitive. Hence, membership tests and retrieval from this mapping are case insensitive with regard
to keys.
Finally, note that the values in the mapping are always instances of DirectoryEntry (page 40). Long-
FilenameEntry (page 40) instances are neither accepted nor returned; these are managed internally.

106 https://docs.python.org/3.12/library/exceptions.html#OSError
107 https://docs.python.org/3.12/library/stdtypes.html#tuple
108 https://docs.python.org/3.12/library/collections.abc.html#collections.abc.MutableSequence
109 https://docs.python.org/3.12/library/exceptions.html#TypeError
110 https://docs.python.org/3.12/library/constants.html#True

6.2. FAT Filesystem 35

https://docs.python.org/3.12/library/exceptions.html#OSError
https://docs.python.org/3.12/library/stdtypes.html#tuple
https://docs.python.org/3.12/library/collections.abc.html#collections.abc.MutableSequence
https://docs.python.org/3.12/library/exceptions.html#TypeError
https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/collections.abc.html#collections.abc.MutableMapping
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_table

nobodd 0.4 Documentation, Release 0.4

MAX_SFN_SUFFIX = 65535

_clean_entries()

Find and remove all deleted entries from the directory.
The method scans the directory for all directory entries and long filename entries which start with 0xE5,
indicating a deleted entry, and overwrites them with later (not deleted) entries. Trailing entries are then
zeroed out. The return value is the new offset of the terminal entry.

_get_names(filename)
Given a filename, generate an appropriately encoded long filename (encoded in little-endian UCS-2),
short filename (encoded in the file-system’s SFN encoding), extension, and the case attributes. The result
is a 4-tuple: lfn, sfn, ext, attr.
lfn, sfn, and ext will be bytes113 strings, and attr will be an int114. If filename is capable of
being represented as a short filename only (potentially with non-zero case attributes), lfn in the result
will be zero-length.

_get_unique_sfn(prefix, ext)
Given prefix and ext, which are str115, of the short filename prefix and extension, find a suffix that
is unique in the directory (amongst both long and short filenames, because these are still in the same
namespace).
For example, in a directory containing default.config (which has shortname DEFAUL~1.CON),
given the filename and extension default.conf, this function will return the str116 DEFAUL~2.
CON.
Because the search requires enumeration of the whole directory, which is expensive, an artificial limit
of MAX_SFN_SUFFIX (page 35) is enforced. If this is reached, the search will terminate with an
OSError117 with code ENOSPC (out of space).

_group_entries()

Generator which yields an offset, and a sequence of either LongFilenameEntry (page 40) and Di-
rectoryEntry (page 40) instances.
Each tuple yielded represents a single (extant, non-deleted) file or directory with its long-filename entries
at the start, and the directory entry as the final element. The offset associated with the sequence is the
offset of the directory entry (not its preceding long filename entries). In other words, for a file with three
long-filename entries, the following might be yielded:

(160, [
<LongFilenameEntry>),
<LongFilenameEntry>),
<LongFilenameEntry>),
<DirectoryEntry>)

])

This indicates that the directory entry is at offset 160, preceded by long filename entries at offsets 128,
96, and 64.

abstract _iter_entries()

Abstract generator that is expected to yield successive offsets and the entries at those offsets as Direc-
toryEntry (page 40) instances or LongFilenameEntry (page 40) instances, as appropriate.
All instances must be yielded, in the order they appear on disk, regardless of whether they represent
deleted, orphaned, corrupted, terminal, or post-terminal entries.

_join_lfn_entries(entries, checksum, sequence=0, lfn=b'')
Given entries, a sequence of LongFilenameEntry (page 40) instances, decode the long filename
encoded within them, ensuring that all the invariants (sequence number, checksums, terminal flag, etc.)
are obeyed.

36 Chapter 6. API Reference

https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/functions.html#int
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/exceptions.html#OSError

nobodd 0.4 Documentation, Release 0.4

Returns the decoded (str118) long filename, or None119 if no valid long filename can be found. Emits
various warnings if invalid entries are encountered during decoding, including OrphanedLongFile-
name (page 33) and BadLongFilename (page 33).

_prefix_entries(filename, entry)
Given entry, a DirectoryEntry (page 40), generate the necessary LongFilenameEntry
(page 40) instances (if any), that are necessary to associate entry with the specified filename.
This function merely constructs the instances, ensuring the (many, convoluted!) rules are followed, in-
cluding that the short filename, if one is generated, is unique in this directory, and the long filename is
encoded and check-summed appropriately.

Note: The filename and ext fields of entry are ignored by this method. The only filename that is consid-
ered is the one explicitly passed in which becomes the basis for the long filename entries and the short
filename stored within the entry itself.

The return value is the sequence of long filename entries and the modified directory entry in the order
they should appear on disk.

_split_entries(entries)
Given entries, a sequence of LongFilenameEntry (page 40) instances, ending with a single Di-
rectoryEntry (page 40) (as would typically be found in a FAT directory index), return the decoded
long filename, short filename, and the directory entry record as a 3-tuple.
If no long filename entries are present, the long filename will be equal to the short filename (but may have
lower-case parts).

Note: This function also carries out several checks, including the filename checksum, that all check-
sums match, that the number of entries is valid, etc. Any violations found may raise warnings including
OrphanedLongFilename (page 33) and BadLongFilename (page 33).

abstract _update_entry(offset, entry)
Abstract method which is expected to (re-)write entry (a DirectoryEntry (page 40) or LongFile-
nameEntry (page 40) instance) at the specified offset in the directory.

items()→ a set-like object providing a view on D's items

values()→ an object providing a view on D's values

class nobodd.fs.FatRoot(mem, encoding)
An abstract derivative of FatDirectory (page 35) representing the (fixed-size) root directory of a FAT-12
or FAT-16 file-system. Must be constructed withmem, which is a buffer object covering the root directory clus-
ters, and encoding, which is taken from FatFileSystem.sfn_encoding (page 31). The Fat12Root
(page 37) and Fat16Root (page 38) classes are (trivial) concrete derivatives of this.

class nobodd.fs.FatSubDirectory(fs, start, encoding)
A concrete derivative of FatDirectory (page 35) representing a sub-directory in a FAT file-system (of
any type). Must be constructed with fs (a FatFileSystem (page 30) instance), start (the first cluster of the
sub-directory), and encoding, which is taken from FatFileSystem.sfn_encoding (page 31).

111 https://docs.python.org/3.12/library/collections.abc.html#collections.abc.MutableMapping
112 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_table
113 https://docs.python.org/3.12/library/stdtypes.html#bytes
114 https://docs.python.org/3.12/library/functions.html#int
115 https://docs.python.org/3.12/library/stdtypes.html#str
116 https://docs.python.org/3.12/library/stdtypes.html#str
117 https://docs.python.org/3.12/library/exceptions.html#OSError
118 https://docs.python.org/3.12/library/stdtypes.html#str
119 https://docs.python.org/3.12/library/constants.html#None

6.2. FAT Filesystem 37

https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/constants.html#None

nobodd 0.4 Documentation, Release 0.4

class nobodd.fs.Fat12Root(mem, encoding)
Concrete, trivial derivative of FatRoot (page 37) which simply declares the root as belonging to a FAT-12
file-system.
fat_type = 'fat12'

class nobodd.fs.Fat16Root(mem, encoding)
Concrete, trivial derivative of FatRoot (page 37) which simply declares the root as belonging to a FAT-16
file-system.
fat_type = 'fat16'

class nobodd.fs.Fat32Root(fs, start, encoding)
This is a trivial derivative of FatSubDirectory (page 37) because, in FAT-32, the root directory is rep-
resented by the same structure as a regular sub-directory.

nobodd.fs.fat_type(mem)
Given a FAT120 file-system at the start of the buffer mem, determine its type, and decode its headers. Returns
a four-tuple containing:

• one of the strings “fat12”, “fat16”, or “fat32”
• a BIOSParameterBlock (page 38) instance
• a ExtendedBIOSParameterBlock (page 39) instance
• a FAT32BIOSParameterBlock (page 39), if one is present, or None121 otherwise

nobodd.fs.fat_type_from_count(bpb, ebpb, ebpb_fat32)
Derives the type of the FAT122 file-system when it cannot be determined directly from the bpb and ebpb
headers (the BIOSParameterBlock (page 38), and ExtendedBIOSParameterBlock (page 39) re-
spectively).
Uses known limits123 on the number of clusters to derive the type of FAT in use. Returns one of the strings
“fat12”, “fat16”, or “fat32”.

6.2.2 nobodd.fat

Defines the data structures used by the FAT124 file system. You should never need these directly; use the nobodd.
fs.FatFileSystem (page 30) class instead.

Data Structures

class nobodd.fat.BIOSParameterBlock(jump_instruction, oem_name, bytes_per_sector,
sectors_per_cluster, reserved_sectors, fat_count,
max_root_entries, fat16_total_sectors, media_descriptor,
sectors_per_fat, sectors_per_track, heads_per_disk,
hidden_sectors, fat32_total_sectors)

A namedtuple()125 representing the BIOS Parameter Block126 found at the very start of a FAT file system
(of any type). This provides several (effectively unused) legacy fields, but also several fields still used exclusively
in later FAT variants (like the count of FAT-32 sectors).
classmethod from_buffer(buf, offset=0)

Construct a BIOSParameterBlock (page 38) from the specified offset (which defaults to 0) in the
buffer protocol object, buf.

120 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
121 https://docs.python.org/3.12/library/constants.html#None
122 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
123 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Size_limits
124 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system

38 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://docs.python.org/3.12/library/constants.html#None
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Size_limits
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block

nobodd 0.4 Documentation, Release 0.4

classmethod from_bytes(s)
Construct a BIOSParameterBlock (page 38) from the byte-string s.

to_buffer(buf, offset=0)
Write this BIOSParameterBlock (page 38) to buf, a buffer protocol object, at the specified offset
(which defaults to 0).

class nobodd.fat.ExtendedBIOSParameterBlock(drive_number, extended_boot_sig, volume_id,
volume_label, file_system)

A namedtuple()127 representing the Extended BIOS Parameter Block128 found either immediately after
the BIOS Parameter Block129 (in FAT-12 and FAT-16 formats), or after the FAT32 BIOS Parameter Block130
(in FAT-32 formats).
This provides several (effectively unused) legacy fields, but also provides the “file_system” field which is used
as the primary means of distinguishing the different FAT types (see nobodd.fs.fat_type() (page 38)),
and the self-explanatory “volume_label” field.
classmethod from_buffer(buf, offset=0)

Construct a ExtendedBIOSParameterBlock (page 39) from the specified offset (which defaults
to 0) in the buffer protocol object, buf.

classmethod from_bytes(s)
Construct a ExtendedBIOSParameterBlock (page 39) from the byte-string s.

to_buffer(buf, offset=0)
Write this ExtendedBIOSParameterBlock (page 39) to buf, a buffer protocol object, at the spec-
ified offset (which defaults to 0).

class nobodd.fat.FAT32BIOSParameterBlock(sectors_per_fat, mirror_flags, version,
root_dir_cluster, info_sector, backup_sector)

A namedtuple()131 representing the FAT32 BIOS Parameter Block132 found immediately after the BIOS
Parameter Block133 in FAT-32 formats. In FAT-12 and FAT-16 formats it should not occur.
This crucially provides the cluster containing the root directory (which is structured as a normal sub-directory
in FAT-32) as well as the number of sectors per FAT, specifically for FAT-32. All other fields are ignored by
this implementation.
classmethod from_buffer(buf, offset=0)

Construct a FAT32BIOSParameterBlock (page 39) from the specified offset (which defaults to 0)
in the buffer protocol object, buf.

classmethod from_bytes(s)

Construct a FAT32BIOSParameterBlock (page 39) from the byte-string s.
to_buffer(buf, offset=0)

Write this FAT32BIOSParameterBlock (page 39) to buf, a buffer protocol object, at the specified
offset (which defaults to 0).

class nobodd.fat.FAT32InfoSector(sig1, reserved1, sig2, free_clusters, last_alloc, reserved2, sig3)
A namedtuple()134 representing the FAT32 Info Sector135 typically found in the sector after the BIOS
Parameter Block136 in FAT-32 formats. In FAT-12 and FAT-16 formats it is not present.
This records the number of free clusters available, and the last allocated cluster, which can speed up the search
for free clusters during allocation. Because this implementation is capable of writing, and thus allocating

125 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
126 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block
127 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
128 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Extended_BIOS_Parameter_Block
129 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block
130 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#FAT32_Extended_BIOS_Parameter_Block
131 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
132 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#FAT32_Extended_BIOS_Parameter_Block
133 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block

6.2. FAT Filesystem 39

https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Extended_BIOS_Parameter_Block
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#FAT32_Extended_BIOS_Parameter_Block
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#FAT32_Extended_BIOS_Parameter_Block
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#FS_Information_Sector
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block

nobodd 0.4 Documentation, Release 0.4

clusters, and because the reserved fields must be ignored but not re-written, they are represented as strings here
(rather than “x” NULs) to ensure they are preserved when writing.
classmethod from_buffer(buf, offset=0)

Construct a FAT32InfoSector (page 39) from the specified offset (which defaults to 0) in the buffer
protocol object, buf.

classmethod from_bytes(s)
Construct a FAT32InfoSector (page 39) from the byte-string s.

to_buffer(buf, offset=0)
Write this FAT32InfoSector (page 39) to buf, a buffer protocol object, at the specified offset (which
defaults to 0).

class nobodd.fat.DirectoryEntry(filename, ext, attr, attr2, ctime_cs, ctime, cdate, adate,
first_cluster_hi, mtime, mdate, first_cluster_lo, size)

A namedtuple()137 representing a FAT directory entry138. This is a fixed-size structure which repeats up
to the size of a cluster within a FAT root or sub-directory.
It contains the (8.3 sized) filename of an entry, the size in bytes, the cluster at which the entry’s data starts, the
entry’s attributes (which determine whether the entry represents a file or another sub-directory), and (depending
on the format), the creation, modification, and access timestamps.
Entries may represent deleted items in which case the first character of the filename will be 0xE5. If the
attr is 0x0F, the entry is actually a long-filename entry and should be converted to LongFilenameEntry
(page 40). If attr is 0x10, the entry represents a sub-directory. See directory entry139 for more details.
classmethod eof()

Make a directory entry from NUL bytes; this is used to signify the end of the directory in indexes.
classmethod from_buffer(buf, offset=0)

Construct a DirectoryEntry (page 40) from the specified offset (which defaults to 0) in the buffer
protocol object, buf.

classmethod from_bytes(s)
Construct a DirectoryEntry (page 40) from the byte-string s.

classmethod iter_over(buf)
Iteratively yields successive DirectoryEntry (page 40) instances from the buffer protocol object,
buf.

Note: This method is entirely dumb and does not check whether the yielded instances are valid; it is up
to the caller to determine the validity of entries.

to_buffer(buf, offset=0)
Write this DirectoryEntry (page 40) to buf, a buffer protocol object, at the specified offset (which
defaults to 0).

class nobodd.fat.LongFilenameEntry(sequence, name_1, attr, checksum, name_2, first_cluster,
name_3)

A namedtuple()140 representing a FAT long filename141. This is a variant of the FAT directory entry142
where the attr field is 0x0F.
Several of these entries will appear before their corresponding DirectoryEntry (page 40), but will be in
reverse order. A checksum is incorporated for additional verification, and a sequence number indicating the
number of segments, and which one is “last” (first in the byte-stream, but last in character order).

134 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
135 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#FS_Information_Sector
136 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#BIOS_Parameter_Block
137 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
138 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_entry
139 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_entry

40 Chapter 6. API Reference

https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_entry
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_entry
https://docs.python.org/3.12/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#VFAT_long_file_names
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_entry

nobodd 0.4 Documentation, Release 0.4

classmethod from_buffer(buf, offset=0)
Construct a LongFilenameEntry (page 40) from the specified offset (which defaults to 0) in the
buffer protocol object, buf.

classmethod from_bytes(s)
Construct a LongFilenameEntry (page 40) from the byte-string s.

classmethod iter_over(buf)
Iteratively yields successive LongFilenameEntry (page 40) instances from the buffer protocol ob-
ject, buf.

Note: This method is entirely dumb and does not check whether the yielded instances are valid; it is up
to the caller to determine the validity of entries.

to_buffer(buf, offset=0)
Write this LongFilenameEntry (page 40) to buf, a buffer protocol object, at the specified offset
(which defaults to 0).

Functions

These utility functions help decode certain fields within the aforementioned structure, or check that tentative contents
are valid.
nobodd.fat.lfn_checksum(sfn, ext)

Calculate the expected long-filename checksum given the filename and ext byte-strings of the short filename
(from the corresponding Directoryentry).

nobodd.fat.lfn_valid(s)
Returns True143 if str144 s only contains characters valid in a VFAT long filename. Almost every Unicode
character is permitted with a few exceptions (angle brackets, wildcards, etc).

6.2.3 nobodd.path

Defines the FatPath (page 42) class, a Path-like class for interacting with directories and sub-directories in a
FatFileSystem (page 30) instance. You should never need to construct this class directly; instead it should be
derived from the root (page 31) attribute which is itself a FatPath (page 42) instance.

>>> from nobodd.disk import DiskImage
>>> from nobodd.fs import FatFileSystem
>>> img = DiskImage('test.img')
>>> fs = FatFileSystem(img.partitions[1].data)
>>> for p in fs.root.iterdir():
... print(repr(p))
...
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/foo')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/bar.txt')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/setup.cfg')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/baz')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/adir')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/BDIR')

140 https://docs.python.org/3.12/library/collections.html#collections.namedtuple
141 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#VFAT_long_file_names
142 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Directory_entry
143 https://docs.python.org/3.12/library/constants.html#True
144 https://docs.python.org/3.12/library/stdtypes.html#str

6.2. FAT Filesystem 41

https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/stdtypes.html#str

nobodd 0.4 Documentation, Release 0.4

FatPath

class nobodd.path.FatPath(fs, *pathsegments)
A Path145-like object representing a filepath within an associated FatFileSystem (page 30).
There is rarely a need to construct this class directly. Instead, instances should be obtained via the root
(page 31) property of a FatFileSystem (page 30). If constructed directly, fs is a FatFileSystem
(page 30) instance, and pathsegments is the sequence of strings to be joined with a path separator into the path.
Instances provide almost all the facilities of the pathlib.Path146 class they are modeled after, including the
crucial open() (page 44) method, iterdir() (page 43), glob() (page 42), and rglob() (page 45) for
enumerating directories, stat() (page 45), is_dir() (page 42), and is_file() (page 43) for querying
information about files, division for construction of new paths, and all the usual name (page 46), parent
(page 46), stem (page 47), and suffix (page 47) attributes. When the FatFileSystem (page 30) is
writable, then unlink() (page 45), touch() (page 45), mkdir() (page 44), rmdir() (page 45), and
rename() (page 44) may also be used.
Instances are also comparable for the purposes of sorting, but only within the same FatFileSystem
(page 30) instance (comparisons across file-system instances raise TypeError147).
exists()

Whether the path points to an existing file or directory:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> (fs.root / 'foo').exists()
True
>>> (fs.root / 'fooo').exists()
False

glob(pattern)
Glob the given relative pattern in the directory represented by this path, yielding matching files (of any
kind):

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> sorted((fs.root / 'nobodd').glob('*.py'))
[FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/__init__.
↪→py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/disk.py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/fat.py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/fs.py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/gpt.py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/main.py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/mbr.py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/tftp.py'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/tools.py
↪→')]

Patterns are the same as for fnmatch()148, with the addition of “**” which means “this directory and
all subdirectories, recursively”. In other words, it enables recurisve globbing.

Warning: Using the “**” pattern in large directory trees may consume an inordinate amount of
time.

is_absolute()

Return whether the path is absolute or not. A path is considered absolute if it has a “/” prefix.

42 Chapter 6. API Reference

https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/exceptions.html#TypeError
https://docs.python.org/3.12/library/fnmatch.html#fnmatch.fnmatch

nobodd 0.4 Documentation, Release 0.4

is_dir()

Return a bool149 indicating whether the path points to a directory. False150 is also returned if the
path doesn’t exist.

is_file()

Returns a bool151 indicating whether the path points to a regular file. False152 is also returned if the
path doesn’t exist.

is_mount()

Returns a bool153 indicating whether the path is a mount point. In this implementation, this is only
True154 for the root path.

is_relative_to(*other)

Return whether or not this path is relative to the other path.
iterdir()

When the path points to a directory, yield path objects of the directory contents:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> for child in fs.root.iterdir(): child
...
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/foo')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/bar.txt')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/setup.cfg')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/baz')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/adir')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/BDIR')

The children are yielded in arbitrary order (the order they are found in the file-system), and the special
entries '.' and '..' are not included.

joinpath(*other)
Calling this method is equivalent to combining the path with each of the other arguments in turn:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> fs.root
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/')
>>> fs.root.joinpath('nobodd')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd')
>>> fs.root.joinpath('nobodd', 'main.py')
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/main.py')

match(pattern)

Match this path against the provided glob-style pattern. Returns a bool155 indicating if the match is
successful.
If pattern is relative, the path may be either relative or absolute, and matching is done from the right:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> f = fs / 'nobodd' / 'mbr.py'
>>> f
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd/mbr.py')
>>> f.match('*.py')
True
>>> f.match('nobodd/*.py')
True
>>> f.match('/*.py')
False

6.2. FAT Filesystem 43

https://docs.python.org/3.12/library/functions.html#bool
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/functions.html#bool
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/functions.html#bool
https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/functions.html#bool

nobodd 0.4 Documentation, Release 0.4

As FAT file-systems are case-insensitive, all matches are likewise case-insensitive.
mkdir(mode=511, parents=False, exist_ok=False)

Create a new directory at this given path. The mode parameter exists only for compatibility with
pathlib.Path156 and is otherwise ignored. If the path already exists, FileExistsError157 is
raised.
If parents is true, any missing parents of this path are created as needed.
If parents is false (the default), a missing parent raises FileNotFoundError158.
If exist_ok is false (the default), FileExistsError159 is raised if the target directory already exists.
If exist_ok is true, FileExistsError160 exceptions will be ignored (same behavior as the POSIX
mkdir -p command), but only if the last path component is not an existing non-directory file.

open(mode='r', buffering=-1, encoding=None, errors=None, newline=None)
Open the file pointed to by the path, like the built-in open()161 function does. The mode, buffering,
encoding, errors and newline options are as for the open()162 function. If successful, a FatFile
(page 32) instance is returned.

Note: This implementation is read-only, so any modes other than “r” and “rb” will fail with Permis-
sionError163.

read_bytes()

Return the binary contents of the pointed-to file as a bytes object:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> (fs.root / 'foo').read_text()
b'foo\n'

read_text(encoding=None, errors=None)
Return the decoded contents of the pointed-to file as a string:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> (fs.root / 'foo').read_text()
'foo\n'

relative_to(*other)
Compute a version of this path relative to the path represented by other. If it’s impossible, ValueEr-
ror164 is raised.

rename(target)
Rename this file or directory to the given target, and return a new FatPath (page 42) instance pointing
to target. If target exists and is a file, it will be replaced silently. target can be either a string or another
path object:

>>> p = fs.root / 'foo'
>>> p.open('w').write('some text')
9
>>> target = fs.root / 'bar'
>>> p.rename(target)
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/bar')
>>> target.read_text()
'some text'

The target path must be absolute. There are no guarantees of atomic behaviour (in contrast to os.
rename()165).

44 Chapter 6. API Reference

https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/exceptions.html#FileExistsError
https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.12/library/exceptions.html#FileExistsError
https://docs.python.org/3.12/library/exceptions.html#FileExistsError
https://docs.python.org/3.12/library/io.html#io.open
https://docs.python.org/3.12/library/io.html#io.open
https://docs.python.org/3.12/library/exceptions.html#PermissionError
https://docs.python.org/3.12/library/exceptions.html#PermissionError
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/os.html#os.rename
https://docs.python.org/3.12/library/os.html#os.rename

nobodd 0.4 Documentation, Release 0.4

Note: pathlib.Path.rename()166 permits relative paths, but interprets them relative to the
working directory which is a concept FatPath (page 42) does not support.

resolve(strict=False)
Make the path absolute, resolving any symlinks. A new FatPath (page 42) object is returned.
".." components are also eliminated (this is the only method to do so). If the path doesn’t exist and
strict is True167, FileNotFoundError168 is raised. If strict is False169, the path is resolved as far
as possible and any remainder is appended without checking whether it exists.
Note that as there is no concept of the “current” directory within FatFileSystem (page 30), relative
paths cannot be resolved by this function, only absolute.

rglob(pattern)
This is like calling glob() (page 42) with a prefix of “**/” to the specified pattern.

rmdir()

Remove this directory. The directory must be empty.
stat(*, follow_symlinks=True)

Return a os.stat_result170 object containing information about this path:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.stat().st_size
388
>>> p.stat().st_ctime
1696606672.02

Note: In a FAT file-system, atime has day resolution, mtime has 2-second resolution, and ctime
has either 2-second or millisecond resolution depending on the driver that created it. Directories have no
timestamp information.

The follow_symlinks parameter is included purely for compatibility withpathlib.Path.stat()171;
it is ignored as symlinks are not supported.

touch(mode=438, exist_ok=True)
Create a file at this given path. The mode parameter is only present for compatibility with pathlib.
Path172 and is otherwise ignored. If the file already exists, the function succeeds if exist_ok is True173
(and its modification time is updated to the current time), otherwise FileExistsError174 is raised.

unlink(missing_ok=False)
Remove this file. If the path points to a directory, use rmdir() (page 45) instead.
If missing_ok is False175 (the default), FileNotFoundError176 is raised if the path does not exist.
If missing_ok is True177, FileNotFoundError178 exceptions will be ignored (same behaviour as
the POSIX rm -f command).

with_name(name)
Return a new path with the name (page 46) changed. If the original path doesn’t have a name, Val-
ueError179 is raised.

with_stem(stem)
Return a new path with the stem (page 47) changed. If the original path doesn’t have a name, Val-
ueError180 is raised.

with_suffix(suffix)
Return a new path with the suffix (page 47) changed. If the original path doesn’t have a suffix, the
new suffix is appended instead. If the suffix is an empty string, the original suffix is removed.

6.2. FAT Filesystem 45

https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.rename
https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/os.html#os.stat_result
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.stat
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/exceptions.html#FileExistsError
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/exceptions.html#ValueError

nobodd 0.4 Documentation, Release 0.4

write_bytes(data)
Open the file pointed to in bytes mode, write data to it, and close the file:

>>> p = fs.root / 'my_binary_file'
>>> p.write_bytes(b'Binary file contents')
20
>>> p.read_bytes()
b'Binary file contents'

An existing file of the same name is overwritten.
write_text(data, encoding=None, errors=None, newline=None)

Open the file pointed to in text mode, write data to it, and close the file:

>>> p = fs.root / 'my_text_file'
>>> p.write_text('Text file contents')
18
>>> p.read_text()
'Text file contents'

An existing file of the same name is overwritten. The optional parameters have the same meaning as in
open() (page 44).

property anchor

Returns the concatenation of the drive and root. This is always “/”.
property fs

Returns the FatFileSystem (page 30) instance that this instance was constructed with.
property name

A string representing the final path component, excluding the root:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.name
'main.py'

property parent

The logical parent of the path:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.parent
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd')

You cannot go past an anchor:

>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.parent.parent.parent
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/')

property parents

An immutable sequence providing access to the logical ancestors of the path:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.parents
(FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/nobodd'),
FatPath(<FatFileSystem label='TEST' fat_type='fat16'>, '/'))

46 Chapter 6. API Reference

nobodd 0.4 Documentation, Release 0.4

property parts

A tuple giving access to the path’s various components:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.parts
['/', 'nobodd', 'main.py']

property root

Returns a string representing the root. This is always “/”.
property stem

The final path component, without its suffix:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.stem
'main'

property suffix

The file extension of the final component, if any:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd' / 'main.py')
>>> p.suffix
'.py'

property suffixes

A list of the path’s file extensions:

>>> fs
<FatFileSystem label='TEST' fat_type='fat16'>
>>> p = (fs.root / 'nobodd.tar.gz')
>>> p.suffixes
['.tar', '.gz']

6.2. FAT Filesystem 47

nobodd 0.4 Documentation, Release 0.4

Internal Functions

nobodd.path.get_cluster(entry, fat_type)
Given entry, a DirectoryEntry (page 40), and the fat_type indicating the size of FAT clusters, return the
first cluster of the file associated with the directory entry.

6.3 TFTP Service

The nobodd.tftpd.TFTPBaseServer (page 49) and nobodd.tftpd.TFTPBaseHandler (page 49)
are two classes which may be customized to produce a TFTP server. Two example classes are included, nobodd.
tftpd.SimpleTFTPServer (page 50) and nobodd.tftpd.SimpleTFTPHandler (page 49) which
serve files directly from a specified path.

6.3.1 nobodd.tftpd

Defines several classes for the purposes of constructing TFTP servers. The most useful are TFTPBaseHandler
(page 49) and TFTPBaseServer (page 49) which are abstract base classes for the construction of a TFTP server
with an arbitrary source of files (these are used by nobodd’s main module). In addition, TFTPSimplerHan-
dler and TFTPSimplerServer are provided as a trivial example implementation of a straight-forward TFTP
file server.
For example, to start a TFTP server which will serve files from the current directory on (unprivileged) port 1069:

>>> from nobodd.tftpd import SimpleTFTPServer
>>> server = SimpleTFTPServer(('0.0.0.0', 1069), '.')
>>> server.serve_forever()

145 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
146 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
147 https://docs.python.org/3.12/library/exceptions.html#TypeError
148 https://docs.python.org/3.12/library/fnmatch.html#fnmatch.fnmatch
149 https://docs.python.org/3.12/library/functions.html#bool
150 https://docs.python.org/3.12/library/constants.html#False
151 https://docs.python.org/3.12/library/functions.html#bool
152 https://docs.python.org/3.12/library/constants.html#False
153 https://docs.python.org/3.12/library/functions.html#bool
154 https://docs.python.org/3.12/library/constants.html#True
155 https://docs.python.org/3.12/library/functions.html#bool
156 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
157 https://docs.python.org/3.12/library/exceptions.html#FileExistsError
158 https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
159 https://docs.python.org/3.12/library/exceptions.html#FileExistsError
160 https://docs.python.org/3.12/library/exceptions.html#FileExistsError
161 https://docs.python.org/3.12/library/io.html#io.open
162 https://docs.python.org/3.12/library/io.html#io.open
163 https://docs.python.org/3.12/library/exceptions.html#PermissionError
164 https://docs.python.org/3.12/library/exceptions.html#ValueError
165 https://docs.python.org/3.12/library/os.html#os.rename
166 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.rename
167 https://docs.python.org/3.12/library/constants.html#True
168 https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
169 https://docs.python.org/3.12/library/constants.html#False
170 https://docs.python.org/3.12/library/os.html#os.stat_result
171 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.stat
172 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
173 https://docs.python.org/3.12/library/constants.html#True
174 https://docs.python.org/3.12/library/exceptions.html#FileExistsError
175 https://docs.python.org/3.12/library/constants.html#False
176 https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
177 https://docs.python.org/3.12/library/constants.html#True
178 https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
179 https://docs.python.org/3.12/library/exceptions.html#ValueError
180 https://docs.python.org/3.12/library/exceptions.html#ValueError

48 Chapter 6. API Reference

nobodd 0.4 Documentation, Release 0.4

Handler Classes

class nobodd.tftpd.TFTPBaseHandler(request, client_address, server)
A abstract base handler for building TFTP servers.
Implements do_RRQ() (page 49) to handle the initial RRQPacket (page 54) of a transfer. This calls the
abstract resolve_path() (page 49) to obtain the Path181-like object representing the requested file.
Descendents must (at a minimum) override resolve_path() (page 49) to implement a TFTP server.
do_ERROR(packet)

Handles ERRORPacket (page 55) by ignoring it. The only way this should appear on the main port is
at the start of a transfer, which would imply we’re not going to start a transfer anyway.

do_RRQ(packet)
Handles packet, the initial RRQPacket (page 54) of a connection.
If option negotiation succeeds, and resolve_path() (page 49) returns a valid Path182-like object,
this method will spin up a TFTPSubServer (page 52) instance in a background thread (see TFTP-
SubServers (page 52)) on an ephemeral port to handle all further interaction with this client.

resolve_path(filename)

Given filename, as requested by a TFTP client, returns a Path183-like object.
In the base class, this is an abstract method which raises NotImplementedError184. Descendents
must override this method to return a Path185-like object, specifically one with a working open()186
method, representing the file requested, or raise an OSError187 (e.g. FileNotFoundError188) if
the requested filename is invalid.

class nobodd.tftpd.SimpleTFTPHandler(request, client_address, server)
An implementation of TFTPBaseHandler (page 49) that overrides uses SimpleTFTPServer.
base_path (page 50) for resolve_path() (page 49).
resolve_path(filename)

Resolves filename against SimpleTFTPServer.base_path (page 50).

Server Classes

class nobodd.tftpd.TFTPBaseServer(address, handler_class, bind_and_activate=True)
A abstract base for building TFTP servers.
To build a concrete TFTP server, make a descendent of TFTPBaseHandler (page 49) that overrides re-
solve_path() (page 49), then make a descendent of this class that calls super().__init__ with the
overridden handler class. See SimpleTFTPHandler (page 49) and SimpleTFTPServer (page 50) for
examples.

Note: While it is common to combine classes like UDPServer189 and TCPServer190 with the threading
or fork-based mixins there is little point in doing so with TFTPBaseServer (page 49).
Only the initial packet of a TFTP transaction arrives on the “main” port; every packet after this is handled
by a background thread with its own ephemeral port. Thus, multi-threading or multi-processing of the initial
connection only applies to a single (minimal) packet.

181 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
182 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
183 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
184 https://docs.python.org/3.12/library/exceptions.html#NotImplementedError
185 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
186 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.open
187 https://docs.python.org/3.12/library/exceptions.html#OSError
188 https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError

6.3. TFTP Service 49

https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/exceptions.html#NotImplementedError
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.open
https://docs.python.org/3.12/library/exceptions.html#OSError
https://docs.python.org/3.12/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.12/library/socketserver.html#socketserver.UDPServer
https://docs.python.org/3.12/library/socketserver.html#socketserver.TCPServer

nobodd 0.4 Documentation, Release 0.4

server_close()

Called to clean-up the server.
May be overridden.

class nobodd.tftpd.SimpleTFTPServer(server_address, base_path)
A trivial (pun intended) implementation ofTFTPBaseServer (page 49) that resolves requested paths against
base_path (a str191 or Path192).
base_path

The base_path specified in the constructor.

Command Line Use

Just as http.server193 can be invoked from the command line as a standalone server using the interpreter’s -m194
option, so nobodd.tftpd (page 48) can too. To serve the current directory as a TFTP server:

python -m nobodd.tftpd

The server listens to port 6969 by default. This is not the registered port 69 of TFTP, but as that port requires root
privileges by default on UNIX platforms, a safer default was selected (the security provenance of this code is largely
unknown, and certainly untested at higher privilege levels). The default port can be overridden by passed the desired
port number as an argument:

python -m nobodd.tftpd 1069

By default, the server binds to all interfaces. The option -b/--bind specifies an address to which it should bind
instead. Both IPv4 and IPv6 addresses are supported. For example, the following command causes the server to bind
to localhost only:

python -m nobodd.tftpd --bind 127.0.0.1

By default, the server uses the current directory. The option -d/--directory specifies a directory from which
it should serve files instead. For example:

python -m nobodd.tftpd --directory /tmp/

Internal Classes and Exceptions

The following classes and exceptions are entirely for internal use and should never be needed (directly) by applications.

class nobodd.tftpd.TFTPClientState(address, path, mode='octet')
Represents the state of a single transfer with a client. Constructed with the client’s address (format varies
according to family), the path of the file to transfer (must be a Path195-like object, specifically one with a
functioning open()196 method), and the mode of the transfer (must be either TFTP_BINARY (page 53) or
TFTP_NETASCII (page 54)).
address

The address of the client.

189 https://docs.python.org/3.12/library/socketserver.html#socketserver.UDPServer
190 https://docs.python.org/3.12/library/socketserver.html#socketserver.TCPServer
191 https://docs.python.org/3.12/library/stdtypes.html#str
192 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
193 https://docs.python.org/3.12/library/http.server.html#module-http.server
194 https://docs.python.org/3.12/using/cmdline.html#cmdoption-m

50 Chapter 6. API Reference

https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/http.server.html#module-http.server
https://docs.python.org/3.12/using/cmdline.html#cmdoption-m
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.open

nobodd 0.4 Documentation, Release 0.4

blocks

An internal mapping of block numbers to blocks. This caches blocks that have been read, transmitted,
but not yet acknowledged. As ACK packets are received, blocks are removed from this cache.

block_size

The size, in bytes, of blocks to transfer to the client.
mode

The transfer mode. One of TFTP_BINARY (page 53) or TFTP_NETASCII (page 54).
source

The file-like object opened from the specified path.
timeout

The timeout, in nano-seconds, to use before re-transmitting packets to the client.
ack(block_num)

Specifies that block_num has been acknowledged by the client and can be removed from blocks
(page 50), the internal block cache.

close()

Closes the source file associated with the client state. This method is idempotent.
get_block(block_num)

Returns the bytes197 of the specified block_num.
If the block_num has not been read yet, this will cause the source (page 51) to be read. Otherwise, it
will be returned from the as-yet unacknowledged block cache (in blocks (page 50)). If the block has
already been acknowledged, which may happen asynchronously, this will raise AlreadyAcknowl-
edged (page 53).
A ValueError198 is raised if an invalid block is requested.

get_size()

Attempts to calculate the size of the transfer. This is used when negotiating the tsize option.
At first, os.fstat()199 is attempted on the open file; if this fails (e.g. because there’s no valid
fileno), the routine will attempt to seek()200 to the end of the file briefly to determine its size.
Raises OSError201 in the case that the size cannot be determined.

negotiate(options)
Called with options, a mapping of option names to values (both str202) that the client wishes to negotiate.
Currently supported options are defined in nobodd.tftp.TFTP_OPTIONS (page 54). The original
optionsmapping is left unchanged. Returns a new options mapping containing only those options that we
understand and accept, and with values adjusted to those that we can support.
Raises BadOptions (page 53) in the case that the client requests pathologically silly or dangerous
options.

property finished

Indicates whether the transfer has completed or not. A transfer is considered complete when the final
(under-sized) block has been sent to the client and acknowledged.

property transferred

Returns the number of bytes transferred to client and successfully acknowledged.

195 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
196 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path.open
197 https://docs.python.org/3.12/library/stdtypes.html#bytes
198 https://docs.python.org/3.12/library/exceptions.html#ValueError
199 https://docs.python.org/3.12/library/os.html#os.fstat
200 https://docs.python.org/3.12/library/io.html#io.IOBase.seek
201 https://docs.python.org/3.12/library/exceptions.html#OSError
202 https://docs.python.org/3.12/library/stdtypes.html#str

6.3. TFTP Service 51

https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/os.html#os.fstat
https://docs.python.org/3.12/library/io.html#io.IOBase.seek
https://docs.python.org/3.12/library/exceptions.html#OSError
https://docs.python.org/3.12/library/stdtypes.html#str

nobodd 0.4 Documentation, Release 0.4

class nobodd.tftpd.TFTPHandler(request, client_address, server)
Abstract base handler for TFTP transfers.
This handles decoding TFTP packets with the classes defined in nobodd.tftp (page 53). If the decoding is
successful, it attempts to call a corresponding do_method (e.g. do_RRQ() (page 49), do_ACK() (page 52))
with the decoded packet. The handler must return a nobodd.tftp.Packet (page 54) in response.
This base class defines no do_methods itself; see TFTPBaseHandler (page 49) and TFTPSubHandler
(page 52).
finish()

Overridden to send the response written to wfile. Returns the number of bytes written.

Note: In contrast to the usual DatagramRequestHandler, this method does not send an empty packet in
the event that wfile has no content, as that confused several TFTP clients.

handle()

Attempts to decode the incoming Packet (page 54) and dispatch it to an appropriately named do_
method. If the method returns another Packet (page 54), it will be sent as the response.

setup()

Overridden to set up the rfile and wfile objects.
class nobodd.tftpd.TFTPSubHandler(request, client_address, server)

Handler for all client interaction after the initial RRQPacket (page 54).
Only the initial packet goes to the “main” TFTP port (69). After that, each transfer communicates between
the client’s original port (presumably in the ephemeral range) and an ephemeral server port, specific to that
transfer. This handler is spawned by the main handler (a descendent of TFTPBaseHandler (page 49)) and
deals with all further client communication. In practice this means it only handles ACKPacket (page 55) and
ERRORPacket (page 55).
do_ACK(packet)

Handles ACKPacket (page 55) by calling TFTPClientState.ack() (page 51). Terminates the
thread for this sub-handler if the transfer is complete, and otherwise sends the next DATAPacket
(page 55) in response.

do_ERROR(packet)
Handles ERRORPacket (page 55) by terminating the transfer (in accordance with the spec.)

finish()

Overridden to note the last time we communicated with this client. This is used by the re-transmit
algorithm.

handle()

Overridden to verify that the incoming packet came from the address (and port) that originally spawned
this sub-handler. Logs and otherwise ignores all packets that do not meet this criteria.

class nobodd.tftpd.TFTPSubServer(main_server, client_state)
The server class associated with TFTPSubHandler (page 52).
You should never need to instantiate this class yourself. The base handler should create an instance of this to
handle all communication with the client after the initial RRQ packet.
service_actions()

Overridden to handle re-transmission after a timeout.
class nobodd.tftpd.TFTPSubServers

Manager class for the threads running TFTPSubServer (page 52).
TFTPBaseServer (page 49) creates an instance of this to keep track of the background threads that are
running transfers with TFTPSubServer (page 52).

52 Chapter 6. API Reference

nobodd 0.4 Documentation, Release 0.4

add(server)
Add server, a TFTPSubServer (page 52) instance, as a new background thread to be tracked.

run()

Watches background threads for completed or otherwise terminated transfers. Shuts down all remaining
servers (and their corresponding threads) at termination.

exception nobodd.tftpd.TransferDone

Exception raised internally to signal that a transfer has been completed.
exception nobodd.tftpd.AlreadyAcknowledged

Exception raised internally to indicate that a particular data packet was already acknowledged, and does not
require repeated acknowlegement.

exception nobodd.tftpd.BadOptions

Exception raised when a client passes invalid options in a RRQPacket (page 54).

6.3.2 nobodd.tftp

Defines the data structures used by the Trivial File Transfer Protocol203 (TFTP). You should never need these directly;
use the classes in nobodd.tftpd (page 48) to construct a TFTP server instead.

Enumerations

class nobodd.tftp.OpCode(value)
Enumeration of op-codes for the Trivial File Transfer Protocol204 (TFTP). These appear at the start of any
TFTP packet to indicate what sort of packet it is.

class nobodd.tftp.Error(value)

Enumeration of error status for the Trivial File Transfer Protocol205 (TFTP). These are used in packets with
OpCode (page 53) ERROR to indicate the sort of error that has occurred.

Constants

nobodd.tftp.TFTP_BLKSIZE

nobodd.tftp.TFTP_MIN_BLKSIZE

nobodd.tftp.TFTP_DEF_BLKSIZE

nobodd.tftp.TFTP_MAX_BLKSIZE

Constants defining the blksize TFTP option; the name of the option, its minimum, default, and maximum
values.

nobodd.tftp.TFTP_TIMEOUT

nobodd.tftp.TFTP_UTIMEOUT

nobodd.tftp.TFTP_MIN_TIMEOUT_NS

nobodd.tftp.TFTP_DEF_TIMEOUT_NS

nobodd.tftp.TFTP_MAX_TIMEOUT_NS

Constants defining the timeout and utimeout TFTP options; the name of the options, the minimum,
default, and maximum values, in units of nano-seconds.

203 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
204 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
205 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

6.3. TFTP Service 53

https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

nobodd 0.4 Documentation, Release 0.4

nobodd.tftp.TFTP_BINARY

nobodd.tftp.TFTP_NETASCII

nobodd.tftp.TFTP_MODES

Constants defining the available transfer modes.
nobodd.tftp.TFTP_TSIZE

Constant defining the name of the tsize TFTP option.
nobodd.tftp.TFTP_OPTIONS

Constant defining the TFTP options available for negotiation.

Packets

class nobodd.tftp.Packet

Abstract base class for all TFTP packets. This provides the class method Packet.from_bytes()
(page 54) which constructs and returns the appropriate concrete sub-class for the OpCode (page 53) found at
the beginning of the packet’s data.
Instances of the concrete classes may be converted back to bytes206 simply by calling bytes207 on them:

>>> b = b'\x00\x01config.txt\0octet\0'
>>> r = Packet.from_bytes(b)
>>> r
RRQPacket(filename='config.txt', mode='octet', options=FrozenDict({}))
>>> bytes(r)
b'\x00\x01config.txt\x00octet\x00'

Concrete classes can also be constructed directly, for conversion into bytes208 during transfer:

>>> bytes(ACKPacket(block=10))
b'\x00\x04\x00\n'
>>> bytes(RRQPacket('foo', 'netascii', {'tsize': 0}))
b'\x00\x01foo.txt\x00netascii\x00tsize\x000\x00'

classmethod from_bytes(s)
Given a bytes209-string s, checks the OpCode (page 53) at the front, and constructs one of the concrete
packet types defined below, returning (instead of Packet (page 54) which is abstract):

>>> Packet.from_bytes(b'\x00\x01config.txt\0octet\0')
RRQPacket(filename='config.txt', mode='octet', options=FrozenDict({}))

classmethod from_data(data)

Constructs an instance of the packet class with the specified data (which is everything in the bytes210-
string passed to from_bytes() (page 54) minus the header). This method is not implemented in
Packet (page 54) but is expected to be implemented in any concrete descendant.

class nobodd.tftp.RRQPacket(filename, mode, options=None)
Concrete type for RRQ (read request) packets.
These packets are sent by a client to initiate a transfer. They include the filename to be sent, the mode to send
it (one of the strings “octet” or “netascii”), and any options the client wishes to negotiate.

206 https://docs.python.org/3.12/library/stdtypes.html#bytes
207 https://docs.python.org/3.12/library/stdtypes.html#bytes
208 https://docs.python.org/3.12/library/stdtypes.html#bytes
209 https://docs.python.org/3.12/library/stdtypes.html#bytes
210 https://docs.python.org/3.12/library/stdtypes.html#bytes

54 Chapter 6. API Reference

https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes

nobodd 0.4 Documentation, Release 0.4

classmethod from_data(data)
Constructs an instance of the packet class with the specified data (which is everything in the bytes211-
string passed to from_bytes() minus the header). This method is not implemented in Packet
(page 54) but is expected to be implemented in any concrete descendant.

class nobodd.tftp.WRQPacket(filename, mode, options=None)
Concrete type for WRQ (write request) packets.
These packets are sent by a client to initiate a transfer to the server. They include the filename to be sent, the
mode to send it (one of the strings “octet” or “netascii”), and any options the client wishes to negotiate.

class nobodd.tftp.DATAPacket(block, data)
Concrete type for DATA packets.
These are sent in response to RRQ, WRQ, or ACK packets and each contains a block of the file to transfer, data
(by default, 512 bytes long unless this is the final DATA packet), and the block number.
classmethod from_data(data)

Constructs an instance of the packet class with the specified data (which is everything in the bytes212-
string passed to from_bytes() minus the header). This method is not implemented in Packet
(page 54) but is expected to be implemented in any concrete descendant.

class nobodd.tftp.ACKPacket(block)

Concrete type for ACK packets.
These are sent in response to DATA packets, and acknowledge the successful receipt of the specified block.
classmethod from_data(data)

Constructs an instance of the packet class with the specified data (which is everything in the bytes213-
string passed to from_bytes() minus the header). This method is not implemented in Packet
(page 54) but is expected to be implemented in any concrete descendant.

class nobodd.tftp.ERRORPacket(error, message=None)
Concrete type for ERROR packets.
These are sent by either end of a transfer to indicate a fatal error condition. Receipt of an ERROR packet
immediately terminates a transfer without further acknowledgment.
The ERROR packet contains the error code (an Error (page 53) value) and a descriptive message.
classmethod from_data(data)

Constructs an instance of the packet class with the specified data (which is everything in the bytes214-
string passed to from_bytes() minus the header). This method is not implemented in Packet
(page 54) but is expected to be implemented in any concrete descendant.

class nobodd.tftp.OACKPacket(options)

Concrete type for OACK packets.
This is sent by the server instead of an initial DATA packet, when the client includes options in the RRQ packet.
The content of the packet is all the options the server accepts, and their (potentially revised) values.
classmethod from_data(data)

Constructs an instance of the packet class with the specified data (which is everything in the bytes215-
string passed to from_bytes() minus the header). This method is not implemented in Packet
(page 54) but is expected to be implemented in any concrete descendant.

211 https://docs.python.org/3.12/library/stdtypes.html#bytes
212 https://docs.python.org/3.12/library/stdtypes.html#bytes
213 https://docs.python.org/3.12/library/stdtypes.html#bytes
214 https://docs.python.org/3.12/library/stdtypes.html#bytes
215 https://docs.python.org/3.12/library/stdtypes.html#bytes

6.3. TFTP Service 55

https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes

nobodd 0.4 Documentation, Release 0.4

6.3.3 nobodd.netascii

Registers a Python codec to translate strings to the TFTP netascii encoding (defined in the TELNET RFC 764216,
under the printer and keyboard section). This is intended to translate line-endings of text files transparently between
platforms, but only handles ASCII characters.

Note: TFTPd implementations could probably ignore this as a historical artefact at this point and assume all transfers
will be done with “octet” (straight byte for byte) encoding, as seems to be common practice. However, netascii isn’t
terribly hard to support, hence the inclusion of this module.

The functions in this module should never need to be accessed directly. Simply use the ‘netascii’ encoding as you
would any other Python byte-encoding:

>>> import os
>>> os.linesep
'\n'
>>> import nobodd.netascii
>>> 'foo\nbar\r'.encode('netascii')
b'foo\r\nbar\r\0'
>>> b'foo\r\nbar\r\0\r\r'.decode('netascii', errors='replace')
'foo\nbar\r??'

Internal Functions

nobodd.netascii.encode(s, errors='strict', final=False)
Encodes the str217 s, which must only contain valid ASCII characters, to the netascii bytes218 representa-
tion.
The errors parameter specifies the handling of encoding errors in the typical manner (‘strict’, ‘ignore’, ‘replace’,
etc). The final parameter indicates whether this is the end of the input. This only matters on the Windows
platform where the line separator is ‘rn’ in which case a trailing ‘r’ character may be the start of a newline
sequence.
The return value is a tuple of the encoded bytes219 string, and the number of characters consumed from s
(this may be less than the length of s when final is False220).

nobodd.netascii.decode(s, errors='strict', final=False)
Decodes the bytes221 string s, which must contain a netascii encoded string, to the str222 representation
(which can only contain ASCII characters).
The errors parameter specifies the handling of encoding errors in the typical manner (‘strict’, ‘ignore’, ‘replace’,
etc). The final parameter indicates whether this is the end of the input. This matters as a trailing ‘r’ in the input
is the beginning of a newline sequence, an encoded ‘r’, or an error (in other cases).
The return value is a tuple of the decoded str223, and the number of characters consumed from s (this may
be less than the length of s when final is False224).

class nobodd.netascii.IncrementalEncoder(errors='strict')

Use codecs.iterencode()225 to utilize this class for encoding:
216 https://datatracker.ietf.org/doc/html/rfc764
217 https://docs.python.org/3.12/library/stdtypes.html#str
218 https://docs.python.org/3.12/library/stdtypes.html#bytes
219 https://docs.python.org/3.12/library/stdtypes.html#bytes
220 https://docs.python.org/3.12/library/constants.html#False
221 https://docs.python.org/3.12/library/stdtypes.html#bytes
222 https://docs.python.org/3.12/library/stdtypes.html#str
223 https://docs.python.org/3.12/library/stdtypes.html#str
224 https://docs.python.org/3.12/library/constants.html#False

56 Chapter 6. API Reference

https://datatracker.ietf.org/doc/html/rfc764
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/stdtypes.html#bytes
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/codecs.html#codecs.iterencode

nobodd 0.4 Documentation, Release 0.4

>>> import os
>>> os.linesep
'\n'
>>> import nobodd.netascii
>>> import codecs
>>> it = ['foo', '\n', 'bar\r']
>>> b''.join(codecs.iterencode(it, 'netascii'))
b'foo\r\nbar\r\0'

class nobodd.netascii.IncrementalDecoder(errors='strict')

Use codecs.iterdecode()226 to utilize this class for encoding:

>>> import os
>>> os.linesep
'\n'
>>> import nobodd.netascii
>>> import codecs
>>> it = [b'foo\r', b'\n', b'bar\r', b'\0']
>>> ''.join(codecs.iterdecode(it, 'netascii'))
'foo\nbar\r'

class nobodd.netascii.StreamWriter(stream, errors='strict')

encode(s, errors='strict')
Encodes the object input and returns a tuple (output object, length consumed).
errors defines the error handling to apply. It defaults to ‘strict’ handling.
The method may not store state in the Codec instance. Use StreamWriter for codecs which have to keep
state in order to make encoding efficient.
The encoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

reset()

Resets the codec buffers used for keeping internal state.
Calling this method should ensure that the data on the output is put into a clean state, that allows appending
of new fresh data without having to rescan the whole stream to recover state.

class nobodd.netascii.StreamReader(stream, errors='strict')

decode(s, errors='strict', final=False)
Decodes the object input and returns a tuple (output object, length consumed).
input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.
errors defines the error handling to apply. It defaults to ‘strict’ handling.
The method may not store state in the Codec instance. Use StreamReader for codecs which have to keep
state in order to make decoding efficient.
The decoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

225 https://docs.python.org/3.12/library/codecs.html#codecs.iterencode
226 https://docs.python.org/3.12/library/codecs.html#codecs.iterdecode

6.3. TFTP Service 57

https://docs.python.org/3.12/library/codecs.html#codecs.iterdecode

nobodd 0.4 Documentation, Release 0.4

6.4 Command line applications

The nobodd.server (page 58) module contains the primary classes, BootServer (page 58) and
BootHandler (page 58) which define a TFTP server (nobodd-tftpd) that reads files from FAT file-systems
contained in OS images. The nobodd.prep (page 59) module contains the implementation of the nobodd-prep
command, which customizes images prior to first net boot.
The nobodd.config (page 60) module provides configuration parsing facilities to these applications.

6.4.1 nobodd.server

This module contains the server and handler classes which make up the main nobodd-tftpd application, as well
as the entry point for the application itself.

Handler Classes

class nobodd.server.BootHandler(request, client_address, server)
A descendent of TFTPBaseHandler (page 49) that resolves paths relative to the FAT file-system in the OS
image associated with the Pi serial number which forms the initial directory.
resolve_path(filename)

Resolves filename relative to the OS image associated with the initial directory.
In other words, if the request is for 1234abcd/config.txt, the handler will look up the board with
serial number 1234abcd in BootServer.boards (page 58), find the associated OS image, the
FAT file-system within that image, and resolve config.txt within that file-system.

Server Classes

class nobodd.server.BootServer(server_address, boards)
A descendent of TFTPBaseServer (page 49) that is configured with boards, a mapping of Pi serial numbers
to Board (page 61) instances, and uses BootHandler (page 58) as the handler class.
boards

The mapping of Pi serial numbers to Board (page 61) instances.
server_close()

Called to clean-up the server.
May be overridden.

Application Functions

nobodd.server.main(args=None)

The main entry point for the nobodd-tftpd application. Takes args, the sequence of command line argu-
ments to parse. Returns the exit code of the application (0 for a normal exit, and non-zero otherwise).
If DEBUG=1 is found in the application’s environment, top-level exceptions will be printed with a full back-
trace. DEBUG=2 will launch PDB in port-mortem mode.

nobodd.server.request_loop(server_address, boards)
The application’s request loop. Takes the server_address to bind to, which may be a (address, port)
tuple, or an int227 file-descriptor passed by a service manager, and the boards configuration, a dict228
mapping serial numbers to Board (page 61) instances.
Raises ReloadRequest (page 59) or TerminateRequest (page 59) in response to certain signals, but
is an infinite loop otherwise.

58 Chapter 6. API Reference

https://docs.python.org/3.12/library/functions.html#int
https://docs.python.org/3.12/library/stdtypes.html#dict

nobodd 0.4 Documentation, Release 0.4

nobodd.server.get_parser()

Returns the command line parser for the application, pre-configured with defaults from the application’s con-
figuration file(s). See ConfigArgumentParser() (page 60) for more information.

Exceptions

exception nobodd.server.ReloadRequest

Exception class raised in request_loop() (page 58) to cause a reload. Handled in main() (page 58).
exception nobodd.server.TerminateRequest(returncode, message='')

Exception class raised in request_loop() (page 58) to cause service termination. Handled in main()
(page 58). Takes the return code of the application as the first argument.

6.4.2 nobodd.prep

This module contains the implementation (and entry point) of the nobodd-prep application.

Application Functions

nobodd.prep.main(args=None)
The main entry point for the nobodd-prep application. Takes args, the sequence of command line argu-
ments to parse. Returns the exit code of the application (0 for a normal exit, and non-zero otherwise).
If DEBUG=1 is found in the application’s environment, top-level exceptions will be printed with a full back-
trace. DEBUG=2 will launch PDB in port-mortem mode.

nobodd.prep.get_parser()

Returns the command line parser for the application, pre-configured with defaults from the application’s con-
figuration file(s). See ConfigArgumentParser() (page 60) for more information.

nobodd.prep.prepare_image(conf)
Given the script’s configuration in conf, an argparse.Namespace229, resize the target image, and re-write
the kernel command line within its boot partition to point to the configured NBD server and share.

nobodd.prep.remove_items(fs, conf)
In fs, a FatFileSystem (page 30), remove all items in the list230 conf.remove, where conf is the script’s
configuration.
If any item is a directory, it and all files under it will be removed recursively. If an item in to_remove does not
exist, a warning will be printed, but no error is raised.

nobodd.prep.copy_items(fs, conf)
Copy all Path231 items in the list232 conf.copy into fs, a FatFileSystem (page 30), where conf is the
script’s configuration.
If an item is a directory, it and all files under it will be copied recursively. If an item is a hard-link or a sym-link
it will be copied as a regular file (since FAT does not support links). If an item does not exist, an OSError233
will be raised. This is in contrast to to_remove() since it is assumed that control over the source file-system
is under the caller’s control, which is not the case in to_remove().

227 https://docs.python.org/3.12/library/functions.html#int
228 https://docs.python.org/3.12/library/stdtypes.html#dict
229 https://docs.python.org/3.12/library/argparse.html#argparse.Namespace
230 https://docs.python.org/3.12/library/stdtypes.html#list
231 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
232 https://docs.python.org/3.12/library/stdtypes.html#list
233 https://docs.python.org/3.12/library/exceptions.html#OSError

6.4. Command line applications 59

https://docs.python.org/3.12/library/argparse.html#argparse.Namespace
https://docs.python.org/3.12/library/stdtypes.html#list
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/stdtypes.html#list
https://docs.python.org/3.12/library/exceptions.html#OSError

nobodd 0.4 Documentation, Release 0.4

nobodd.prep.rewrite_cmdline(fs, conf)
Given the script’s configuration conf, find the file conf.cmdline containing the kernel command-line in the
FatFileSystem (page 30) fs, and re-write it to point the NBD share specified.

nobodd.prep.detect_partitions(conf)
Given the script’s configuration in conf, an argparse.Namespace234, open the target image, and attempt
to detect the root and/or boot partition.

6.4.3 nobodd.config

This module contains the classes and functions used to configure the main nobodd application. These are not likely
to be of much use to other applications, but are documented here just in case.

ConfigArgumentParser

class nobodd.config.ConfigArgumentParser(*args, template=None, **kwargs)
A variant of ArgumentParser235 that links arguments to specified keys in a ConfigParser236 instance.
Typical usage is to construct an instance of ConfigArgumentParser (page 60), define the parameters
and parameter groups on it, associating them with configuration section and key names as appropriate, then call
read_configs() (page 61) to parse a set of configuration files. These will be checked against the (optional)
template configuration passed to the initializer, which defines the set of valid sections and keys expected.
The resulting ConfigParser237 forms the “base” configuration, prior to argument parsing. This can be
optionallymanipulated, before passing it toset_defaults_from() (page 61) to set the argument defaults.
At this point, parse_args()238 may be called to parse the command line arguments, knowing that defaults
in the help will be drawn from the “base” configuration.
The resulting Namespace239 object is the application’s runtime configuration. For example:

>>> from pathlib import Path
>>> from nobodd.config import *
>>> parser = ConfigArgumentParser()
>>> tftp = parser.add_argument_group('tftp', section='tftp')
>>> tftp.add_argument('--listen', type=str, key='listen',
... help="the address on which to listen for connections "
... "(default: %(default)s)")
>>> Path('defaults.conf').write_text('''
... [tftp]
... listen = 127.0.0.1
... ''')
>>> defaults = parser.read_configs(['defaults.conf'])
>>> parser.set_defaults_from(defaults)
>>> parser.get_default('listen')
'127.0.0.1'
>>> config = parser.parse_args(['--listen', '0.0.0.0'])
>>> config.listen
'0.0.0.0'

Note that, after the call to set_defaults_from() (page 61), the parser’s idea of the defaults has been
drawn from the file-based configuration (and thus will be reflected in printed --help), but this is still over-
ridden by the arguments passed to the command line.
add_argument(*args, section=None, key=None, **kwargs)

Adds section and key parameters. These link the new argument to the specified configuration entry.
The default for the argument can be specified directly as usual, or can be read from the configuration
(see read_configs() (page 61) and set_defaults_from() (page 61)). When arguments are
parsed, the value assigned to this argument will be copied to the associated configuration entry.

234 https://docs.python.org/3.12/library/argparse.html#argparse.Namespace

60 Chapter 6. API Reference

https://docs.python.org/3.12/library/argparse.html#argparse.Namespace
https://docs.python.org/3.12/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.12/library/argparse.html#argparse.ArgumentParser.parse_args
https://docs.python.org/3.12/library/argparse.html#argparse.Namespace

nobodd 0.4 Documentation, Release 0.4

add_argument_group(title=None, description=None, section=None)
Adds a new argument group object and returns it.
The new argument group will likewise accept section and key parameters on its add_argument()
(page 60) method. The section parameter will default to the value of the section parameter passed to this
method (but may be explicitly overridden).

of_type(type)
Return a set of (section, key) tuples listing all configuration items which were defined as being of the
specified type (with the type keyword passed to add_argument() (page 60).

read_configs(paths)
Constructs a ConfigParser240 instance, and reads the configuration files specified by paths, a list of
Path241-like objects, into it.
The method will check the configuration for valid section and key names, raising ValueError242 on
invalid items. It will also resolve any configuration values that have the type Path243 relative to the path
of the configuration file in which they were defined.
The return value is the configuration parser instance.

set_defaults_from(config)
Sets defaults for all arguments from their associated configuration entries in config.

update_config(config, namespace)
Copy values from namespace (an argparse.Namespace244, presumably the result of calling some-
thing like parse_args()245) to config, a ConfigParser246. Note that namespace values will be
converted to str247 implicitly.

Board

class nobodd.config.Board(serial, image, partition, ip)
Represents a known board, recording its serial number, the image (filename) that the board should boot, the
partition number within the image that contains the boot partition, and the IP address (if any) that the board
should have.
classmethod from_section(config, section)

Construct a new Board (page 61) from the specified section of the config (a mapping, e.g. a Config-
Parser248 section).

classmethod from_string(s)

Construct a new Board (page 61) from the string s which is expected to be a comma-separated list of
serial number, filename, partition number, and IP address. The last two parts (partition number and IP
address) are optional and default to 1 and None249 respectively.

235 https://docs.python.org/3.12/library/argparse.html#argparse.ArgumentParser
236 https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
237 https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
238 https://docs.python.org/3.12/library/argparse.html#argparse.ArgumentParser.parse_args
239 https://docs.python.org/3.12/library/argparse.html#argparse.Namespace
240 https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
241 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
242 https://docs.python.org/3.12/library/exceptions.html#ValueError
243 https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
244 https://docs.python.org/3.12/library/argparse.html#argparse.Namespace
245 https://docs.python.org/3.12/library/argparse.html#argparse.ArgumentParser.parse_args
246 https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
247 https://docs.python.org/3.12/library/stdtypes.html#str
248 https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
249 https://docs.python.org/3.12/library/constants.html#None

6.4. Command line applications 61

https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/pathlib.html#pathlib.Path
https://docs.python.org/3.12/library/argparse.html#argparse.Namespace
https://docs.python.org/3.12/library/argparse.html#argparse.ArgumentParser.parse_args
https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.12/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.12/library/constants.html#None

nobodd 0.4 Documentation, Release 0.4

Conversion Functions

nobodd.config.port(s)

Convert the string s into a port number. The string may either contain an integer representation (in which case
the conversion is trivial, or a port name, in which case socket.getservbyname()250 will be used to
convert it to a port number (usually via NSS).

nobodd.config.boolean(s)

Convert the string s to a bool251. A typical set of case insensitive strings are accepted: “yes”, “y”, “true”, “t”,
and “1” are converted to True252, while “no”, “n”, “false”, “f”, and “0” convert to False253. Other values
will result in ValueError254.

nobodd.config.size(s)

Convert the string s, which must contain a number followed by an optional suffix (MB for mega-bytes, GB, for
giga-bytes, etc.), and return the absolute integer value (scale the number in the string by the suffix given).

nobodd.config.duration(s)

Convert the string s to a timedelta255. The string must consist of white-space and/or comma separated
values which are a number followed by a suffix indicating duration. For example:

>>> duration('1s')
timedelta(seconds=1)
>>> duration('5 minutes, 30 seconds')
timedelta(seconds=330)

The set of possible durations, and their recognized suffixes is as follows:
• Microseconds: microseconds, microsecond, microsec, micros, micro, useconds, usecond, usecs, usec, us,
µseconds, µsecond, µsecs, µsec, µs

• Milliseconds: milliseconds, millisecond, millisec, millis, milli, mseconds, msecond, msecs, msec, ms
• Seconds: seconds, second, secs, sec, s
• Minutes: minutes, minute, mins, min, mi, m
• Hours: hours, hour, hrs, hr, h

If conversion fails, ValueError256 is raised.

6.4.4 nobodd.systemd

This module contains a singleton class intended for communication with the systemd(1) service manager. It
includes facilities for running a service as Type=notify where the service can actively communicate to systemd
that it is ready to handle requests, is reloading its configuration, is shutting down, or that it needs more time to handle
certain operations.
It also includes methods to ping the systemd watchdog, and to retrieve file-descriptors stored on behalf of the service
(or provided as part of socket-activation).
250 https://docs.python.org/3.12/library/socket.html#socket.getservbyname
251 https://docs.python.org/3.12/library/functions.html#bool
252 https://docs.python.org/3.12/library/constants.html#True
253 https://docs.python.org/3.12/library/constants.html#False
254 https://docs.python.org/3.12/library/exceptions.html#ValueError
255 https://docs.python.org/3.12/library/datetime.html#datetime.timedelta
256 https://docs.python.org/3.12/library/exceptions.html#ValueError

62 Chapter 6. API Reference

https://docs.python.org/3.12/library/socket.html#socket.getservbyname
https://docs.python.org/3.12/library/functions.html#bool
https://docs.python.org/3.12/library/constants.html#True
https://docs.python.org/3.12/library/constants.html#False
https://docs.python.org/3.12/library/exceptions.html#ValueError
https://docs.python.org/3.12/library/datetime.html#datetime.timedelta
https://docs.python.org/3.12/library/exceptions.html#ValueError

nobodd 0.4 Documentation, Release 0.4

Systemd Class

class nobodd.systemd.Systemd(address=None)

Provides a simple interface to systemd’s notification and watchdog services. It is suggested applications obtain
a single, top-level instance of this class via get_systemd() (page 64) and use it to communicate with
systemd.
available()

If systemd’s notification socket is not available, raises RuntimeError257. Services expecting systemd
notifications to be available can call this to assert that notifications will be noticed.

extend_timeout(timeout)
Notify systemd to extend the start / stop timeout by timeout seconds. A timeout will occur if the service
does not call ready() (page 63) or terminate within timeout seconds but only if the original timeout
(set in the systemd configuration) has already been exceeded.
For example, if the stopping timeout is configured as 90s, and the service calls stopping() (page 63),
systemd expects the service to terminate within 90s. After 10s the service calls extend_timeout()
(page 63) with a timeout of 10s. 20s later the service has not yet terminated but systemd does not consider
the timeout expired as only 30s have elapsed of the original 90s timeout.

listen_fds()

Return file-descriptors passed to the service by systemd, e.g. as part of socket activation or file descriptor
stores. It returns a dict258 mapping each file-descriptor to its name, or the string “unknown” if no name
was given.

main_pid(pid=None)
Report the main PID of the process to systemd (for services that confuse systemd with their forking
behaviour). If pid is None, os.getpid()259 is called to determine the calling process’ PID.

notify(state)
Send a notification to systemd. state is a string type (if it is a unicode string it will be encoded with the
‘ascii’ codec).

ready()

Notify systemd that service startup is complete.
reloading()

Notify systemd that the service is reloading its configuration. Call ready() (page 63) when reload is
complete.

stopping()

Notify systemd that the service is stopping.
watchdog_clean()

Unsets the watchdog environment variables so that no future child processes will inherit them.

Warning: After calling this function, watchdog_period() (page 63) will return None but
systemd will continue expecting watchdog_ping() (page 63) to be called periodically. In other
words, you should call watchdog_period() (page 63) first and store its result somewhere before
calling this function.

watchdog_period()

Returns the time (in seconds) before which systemd expects the process to call watchdog_ping()
(page 63). If a watchdog timeout is not set, the function returns None.

watchdog_ping()

Ping the systemdwatchdog. Thismust be done periodically ifwatchdog_period() (page 63) returns
a value other than None.

6.4. Command line applications 63

https://docs.python.org/3.12/library/exceptions.html#RuntimeError
https://docs.python.org/3.12/library/stdtypes.html#dict
https://docs.python.org/3.12/library/os.html#os.getpid

nobodd 0.4 Documentation, Release 0.4

watchdog_reset(timeout)
Reset the systemd watchdog timer to timeout seconds.

nobodd.systemd.get_systemd()

Return a single top-level instance of Systemd (page 63); repeated calls will return the same instance.

6.5 Miscellaneous

The nobodd.tools (page 64) module contains a variety of utility functions that either cross boundaries in the
system or are entirely generic.

6.5.1 nobodd.tools

This module houses a series of miscellaneous functions which did not fit particularly well anywhere else and are
needed across a variety of modules. They should never be needed by developers using nobodd as an application or a
library, but are documented in case they are useful.
nobodd.tools.labels(desc)

Given the description of a C structure in desc, returns a tuple of the labels.
The str260 desc must contain one entry per line (blank lines are ignored) where each entry consists of whites-
pace separated type (in Python struct261 format) and label. For example:

>>> EBPB = '''
B drive_number
1x reserved
B extended_boot_sig
4s volume_id
11s volume_label
8s file_system
'''
>>> labels(EBPB)
('drive_number', 'extended_boot_sig', 'volume_id', 'volume_label',
'file_system')

Note the amount of whitespace is arbitrary, and further that any entries with the type “x” (which is used to
indicate padding) will be excluded from the result (“reserved” is missing from the result tuple above).
The corresponding function formats() (page 64) can be used to obtain a tuple of the types.

nobodd.tools.formats(desc, prefix='<')
Given the description of a C structure in desc, returns a concatenated str262 of the types with an optional
prefix (for endianness).
The str263 desc must contain one entry per line (blank lines are ignored) where each entry consists of whites-
pace separated type (in Python struct264 format) and label. For example:

>>> EBPB = '''
B drive_number
1x reserved
B extended_boot_sig
4s volume_id
11s volume_label
8s file_system

(continues on next page)
257 https://docs.python.org/3.12/library/exceptions.html#RuntimeError
258 https://docs.python.org/3.12/library/stdtypes.html#dict
259 https://docs.python.org/3.12/library/os.html#os.getpid
260 https://docs.python.org/3.12/library/stdtypes.html#str
261 https://docs.python.org/3.12/library/struct.html#module-struct

64 Chapter 6. API Reference

https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/struct.html#module-struct
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/struct.html#module-struct

nobodd 0.4 Documentation, Release 0.4

(continued from previous page)
'''
>>> formats(EBPB)
'<B1xB4s11s8s'

Note the amount of whitespace is arbitrary, and further that any entries with the type “x” (which is used to
indicate padding) are not excluded (unlike in labels() (page 64)).
The corresponding function labels() (page 64) can be used to obtain a tuple of the labels.

nobodd.tools.get_best_family(host, port)
Given a host name and a port specification (either a number or a service name), returns the network family
(e.g. socket.AF_INET) and socket address to listen on as a tuple.

nobodd.tools.format_address(address)

Given a socket address, return a suitable str265 representation of it.
Specifically, for IP4 addresses a simple “host:port” representation is used. For IP6 addresses (which typically
incorporate “:” in the host portion), a “[host]:port” variant is used.

nobodd.tools.pairwise(iterable, /)
Return an iterator of overlapping pairs taken from the input iterator.
s -> (s0,s1), (s1,s2), (s2, s3), …

nobodd.tools.decode_timestamp(date, time, cs=0)
Given the integers date, time, and optionally cs (from various fields in DirectoryEntry (page 40)), return
a datetime266 with the decoded timestamp.

nobodd.tools.encode_timestamp(ts)

Given a datetime267, encode it as a FAT-compatible triple of three 16-bit integers representing (date, time,
1/100th seconds).

nobodd.tools.any_match(s, expressions)
Given a str268 s, and expressions, a sequence of compiled regexes, return the re.Match269 object from the
first regex that matches s. If no regexes match, return None270.

nobodd.tools.exclude(ranges, value)
Given a list non-overlapping of ranges, sorted in ascending order, this function modifies the range containing
value (an integer, which must belong to one and only one range in the list) to exclude it.

class nobodd.tools.BufferedTranscoder(stream, output_encoding, input_encoding=None,
errors='strict')

A read-only transcoder, somewhat similar to codecs.StreamRecoder271, but which strictly obeys the
definition of the read method (with internal buffering).
This class is primarily intended for use in netascii (page 56) encoded transfers where it is used to transcode
the underlying file stream into netascii encoding for the TFTP server.
The built-in codecs.StreamRecoder272 class would seem ideal for this but for one issue: under certain
circumstances (including those involved in netascii encoding), it violates the contract of the read method by
returning more bytes than requested. For example:

262 https://docs.python.org/3.12/library/stdtypes.html#str
263 https://docs.python.org/3.12/library/stdtypes.html#str
264 https://docs.python.org/3.12/library/struct.html#module-struct
265 https://docs.python.org/3.12/library/stdtypes.html#str
266 https://docs.python.org/3.12/library/datetime.html#datetime.datetime
267 https://docs.python.org/3.12/library/datetime.html#datetime.datetime
268 https://docs.python.org/3.12/library/stdtypes.html#str
269 https://docs.python.org/3.12/library/re.html#re.Match
270 https://docs.python.org/3.12/library/constants.html#None

6.5. Miscellaneous 65

https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/datetime.html#datetime.datetime
https://docs.python.org/3.12/library/datetime.html#datetime.datetime
https://docs.python.org/3.12/library/stdtypes.html#str
https://docs.python.org/3.12/library/re.html#re.Match
https://docs.python.org/3.12/library/constants.html#None
https://docs.python.org/3.12/library/codecs.html#codecs.StreamRecoder
https://docs.python.org/3.12/library/codecs.html#codecs.StreamRecoder

nobodd 0.4 Documentation, Release 0.4

>>> import io, codecs
>>> latin1_stream = io.BytesIO('abcdé'.encode('latin-1'))
>>> utf8_stream = codecs.StreamRecoder(latin1_stream,
... codecs.getencoder('utf-8'), codecs.getdecoder('utf-8'),
... codecs.getreader('latin-1'), codecs.getwriter('latin-1'))
>>> utf8_stream.read(3)
b'abc'
>>> utf8_stream.read(1)
b'd'
>>> utf8_stream.read(1)
b'\xc3\xa9'

This is alluded to in the documentation of StreamReader.read so it probably isn’t a bug, but it is rather
inconvenient when the caller is looking to fill a network packet of a specific size, and thus expects not to
over-run.
This class implements a rather simpler recoder, which is read-only, does not permit seeking, but by use of an
internal buffer, guarantees that the read() method (and associated methods like readinto()) will not
return more bytes than requested.
It is constructed with the underlying stream, the name of the output_encoding, the name of the input_encoding
(which defaults to the output_encoding when not specified), and the errors mode to use with the codecs. For
example:

>>> import io
>>> from nobodd.tools import BufferedTranscoder
>>> latin1_stream = io.BytesIO('abcdé'.encode('latin-1'))
>>> utf8_stream = BufferedTranscoder(latin1_stream, 'utf-8', 'latin-1')
>>> utf8_stream.read(4)
b'abcd'
>>> utf8_stream.read(1)
b'\xc3'
>>> utf8_stream.read(1)
b'\xa9'

readable()

Return whether object was opened for reading.
If False, read() will raise OSError.

readall()

Read until EOF, using multiple read() call.
class nobodd.tools.FrozenDict(*args)

A hashable, immutable mapping type.
The arguments to FrozenDict (page 66) are processed just like those to dict273.

271 https://docs.python.org/3.12/library/codecs.html#codecs.StreamRecoder
272 https://docs.python.org/3.12/library/codecs.html#codecs.StreamRecoder
273 https://docs.python.org/3.12/library/stdtypes.html#dict

66 Chapter 6. API Reference

https://docs.python.org/3.12/library/stdtypes.html#dict

CHAPTER

SEVEN

DEVELOPMENT

The main GitHub repository for the project can be found at:
https://github.com/waveform80/nobodd

7.1 Development installation

If you wish to develop nobodd, obtain the source by cloning the GitHub repository and then use the “develop” target
of the Makefile which will install the package as a link to the cloned repository allowing in-place development. The
following example demonstrates this method within a virtual Python environment:

$ sudo apt install build-essential git virtualenvwrapper

After installing virtualenvwrapper you’ll need to restart your shell before commands like mkvirtualenv
will operate correctly. Once you’ve restarted your shell, continue:

$ cd
$ mkvirtualenv nobodd
$ workon nobodd
(nobodd) $ git clone https://github.com/waveform80/nobodd.git
(nobodd) $ cd nobodd
(nobodd) $ make develop

To pull the latest changes from git into your clone and update your installation:

$ workon nobodd
(nobodd) $ cd ~/nobodd
(nobodd) $ git pull
(nobodd) $ make develop

To remove your installation, destroy the sandbox and the clone:

(nobodd) $ deactivate
$ rmvirtualenv nobodd
$ rm -rf ~/nobodd

67

https://github.com/waveform80/nobodd

nobodd 0.4 Documentation, Release 0.4

7.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output. The
following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-xetex graphviz inkscape \
python3-sphinx python3-sphinx-rtd-theme latexmk xindy

Once these are installed, you can use the “doc” target to build the documentation in all supported formats (HTML,
ePub, and PDF):

$ workon nobodd
(nobodd) $ cd ~/nobodd
(nobodd) $ make doc

However, the easiest way to develop the documentation is with the “preview” target which will build the HTML
version of the docs, and start a web-server to preview the output. The web-server will then watch for source changes
(in both the documentation source, and the application’s source) and rebuild the HTML automatically as required:

$ workon nobodd
(nobodd) $ cd ~/nobodd
(nobodd) $ make preview

The HTML output is written to build/html while the PDF output goes to build/latex.

7.3 Test suite

If you wish to run the nobodd test suite, follow the instructions in Development installation (page 67) above and then
make the “test” target within the sandbox:

$ workon nobodd
(nobodd) $ cd ~/nobodd
(nobodd) $ make test

The test suite is also setup for usage with the tox utility, in which case it will attempt to execute the test suite with
all supported versions of Python. If you are developing under Ubuntu you may wish to look into the Dead Snakes
PPA274 in order to install old/new versions of Python; the tox setup should work with the version of tox shipped with
Ubuntu Focal, but more features (like parallel test execution) are available with later versions.
For example, to execute the test suite under tox, skipping interpreter versions which are not installed:

$ tox

To execute the test suite under all installed interpreter versions in parallel, using as many parallel tasks as there are
CPUs, then displaying a combined report of coverage from all environments:

$ tox -p auto
$ coverage combine .coverage.py*
$ coverage report

274 https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

68 Chapter 7. Development

https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa
https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

CHAPTER

EIGHT

CHANGELOG

8.1 Release 0.4 (2024-03-07)

• Use absolute paths for output of nbd-server and tftpd server configurations
• Include missing #cloud-config header in the tutorial

8.2 Release 0.3 (2024-03-06)

• Fix configuration reload when inheriting the TFTP socket from a service manager (#8275)

8.3 Prototype 0.2 (unreleased)

• Add inheritance of the TFTP socket (#3276)

8.4 Prototype 0.1 (unreleased)

• Initial tag

275 https://github.com/waveform80/nobodd/issues/8
276 https://github.com/waveform80/nobodd/issues/3

69

https://github.com/waveform80/nobodd/issues/8
https://github.com/waveform80/nobodd/issues/3

nobodd 0.4 Documentation, Release 0.4

70 Chapter 8. Changelog

CHAPTER

NINE

LICENSE

This file is part of nobodd.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License version 3, as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see <https:
//www.gnu.org/licenses/>.

71

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

nobodd 0.4 Documentation, Release 0.4

72 Chapter 9. License

PYTHON MODULE INDEX

n
nobodd.config, 60
nobodd.disk, 25
nobodd.fat, 38
nobodd.fs, 29
nobodd.gpt, 28
nobodd.mbr, 29
nobodd.netascii, 56
nobodd.path, 41
nobodd.prep, 59
nobodd.server, 58
nobodd.systemd, 62
nobodd.tftp, 53
nobodd.tftpd, 48
nobodd.tools, 64

73

nobodd 0.4 Documentation, Release 0.4

74 Python Module Index

INDEX

Symbols
_clean_entries() (nobodd.fs.FatDirectory

method), 36
_get_names() (nobodd.fs.FatDirectory method), 36
_get_unique_sfn() (nobodd.fs.FatDirectory

method), 36
_group_entries() (nobodd.fs.FatDirectory

method), 36
_iter_entries() (nobodd.fs.FatDirectorymethod),

36
_join_lfn_entries() (nobodd.fs.FatDirectory

method), 36
_prefix_entries() (nobodd.fs.FatDirectory

method), 37
_split_entries() (nobodd.fs.FatDirectory

method), 37
_update_entry() (nobodd.fs.FatDirectorymethod),

37
-C

nobodd-prep command line option, 18
-R

nobodd-prep command line option, 18
--board

nobodd-tftpd command line option,
21

--boot-partition
nobodd-prep command line option, 17

--cmdline
nobodd-prep command line option, 17

--copy
nobodd-prep command line option, 18

--help
nobodd-prep command line option, 17
nobodd-tftpd command line option,

21
--listen

nobodd-tftpd command line option,
21

--nbd-conf
nobodd-prep command line option, 18

--nbd-host
nobodd-prep command line option, 17

--nbd-name
nobodd-prep command line option, 17

--port
nobodd-tftpd command line option,

21
--remove

nobodd-prep command line option, 18
--root-partition

nobodd-prep command line option, 17
--serial

nobodd-prep command line option, 18
--size

nobodd-prep command line option, 17
--tftpd-conf

nobodd-prep command line option, 18
--version

nobodd-prep command line option, 17
nobodd-tftpd command line option,

21
-h

nobodd-prep command line option, 17
nobodd-tftpd command line option,

21
-s

nobodd-prep command line option, 17

A
ack() (nobodd.tftpd.TFTPClientState method), 51
ACKPacket (class in nobodd.tftp), 55
add() (nobodd.tftpd.TFTPSubServers method), 52
add_argument() (no-

bodd.config.ConfigArgumentParser method),
60

add_argument_group() (no-
bodd.config.ConfigArgumentParser method),
61

address (nobodd.tftpd.TFTPClientState attribute), 50
AlreadyAcknowledged, 53
anchor (nobodd.path.FatPath property), 46
any_match() (in module nobodd.tools), 65
atime (nobodd.fs.FatFileSystem property), 31
available() (nobodd.systemd.Systemd method), 63

B
BadLongFilename, 33
BadOptions, 53
base_path (nobodd.tftpd.SimpleTFTPServer at-

tribute), 50
BIOSParameterBlock (class in nobodd.fat), 38

75

nobodd 0.4 Documentation, Release 0.4

block_size (nobodd.tftpd.TFTPClientState attribute),
51

blocks (nobodd.tftpd.TFTPClientState attribute), 50
Board (class in nobodd.config), 61
boards (nobodd.server.BootServer attribute), 58
boolean() (in module nobodd.config), 62
BootHandler (class in nobodd.server), 58
BootServer (class in nobodd.server), 58
BufferedTranscoder (class in nobodd.tools), 65

C
chain() (nobodd.fs.FatTable method), 34
close() (nobodd.disk.DiskImage method), 26
close() (nobodd.disk.DiskPartition method), 27
close() (nobodd.fs.FatFile method), 32
close() (nobodd.fs.FatFileSystem method), 30
close() (nobodd.tftpd.TFTPClientState method), 51
clusters (nobodd.fs.FatFileSystem property), 31
ConfigArgumentParser (class in nobodd.config),

60
copy_items() (in module nobodd.prep), 59

D
DamagedFileSystem, 33
data (nobodd.disk.DiskPartition property), 27
DATAPacket (class in nobodd.tftp), 55
decode() (in module nobodd.netascii), 56
decode() (nobodd.netascii.StreamReader method), 57
decode_timestamp() (in module nobodd.tools), 65
detect_partitions() (in module nobodd.prep),

60
DirectoryEntry (class in nobodd.fat), 40
DirtyFileSystem, 33
DiskImage (class in nobodd.disk), 26
DiskPartition (class in nobodd.disk), 27
DiskPartitionsGPT (class in nobodd.disk), 28
DiskPartitionsMBR (class in nobodd.disk), 28
do_ACK() (nobodd.tftpd.TFTPSubHandler method), 52
do_ERROR() (nobodd.tftpd.TFTPBaseHandler

method), 49
do_ERROR() (nobodd.tftpd.TFTPSubHandler method),

52
do_RRQ() (nobodd.tftpd.TFTPBaseHandler method),

49
duration() (in module nobodd.config), 62

E
encode() (in module nobodd.netascii), 56
encode() (nobodd.netascii.StreamWriter method), 57
encode_timestamp() (in module nobodd.tools), 65
end_mark (nobodd.fs.Fat12Table attribute), 34
end_mark (nobodd.fs.Fat16Table attribute), 34
end_mark (nobodd.fs.Fat32Table attribute), 35
environment variable

LISTEN_FDS, 22
eof() (nobodd.fat.DirectoryEntry class method), 40
Error (class in nobodd.tftp), 53
ERRORPacket (class in nobodd.tftp), 55

exclude() (in module nobodd.tools), 65
exists() (nobodd.path.FatPath method), 42
extend_timeout() (nobodd.systemd.Systemd

method), 63
ExtendedBIOSParameterBlock (class in no-

bodd.fat), 39

F
fat (nobodd.fs.FatFileSystem property), 31
Fat12Root (class in nobodd.fs), 37
Fat12Table (class in nobodd.fs), 34
Fat16Root (class in nobodd.fs), 38
Fat16Table (class in nobodd.fs), 34
FAT32BIOSParameterBlock (class in nobodd.fat),

39
FAT32InfoSector (class in nobodd.fat), 39
Fat32Root (class in nobodd.fs), 38
Fat32Table (class in nobodd.fs), 34
fat_type (nobodd.fs.Fat12Root attribute), 38
fat_type (nobodd.fs.Fat16Root attribute), 38
fat_type (nobodd.fs.FatFileSystem property), 31
fat_type() (in module nobodd.fs), 38
fat_type_from_count() (in module nobodd.fs),

38
FatClusters (class in nobodd.fs), 35
FatDirectory (class in nobodd.fs), 35
FatFile (class in nobodd.fs), 32
FatFileSystem (class in nobodd.fs), 30
FatPath (class in nobodd.path), 42
FatRoot (class in nobodd.fs), 37
FatSubDirectory (class in nobodd.fs), 37
FatTable (class in nobodd.fs), 33
FatWarning, 33
finish() (nobodd.tftpd.TFTPHandler method), 52
finish() (nobodd.tftpd.TFTPSubHandler method), 52
finished (nobodd.tftpd.TFTPClientState property), 51
format_address() (in module nobodd.tools), 65
formats() (in module nobodd.tools), 64
free() (nobodd.fs.Fat32Table method), 35
free() (nobodd.fs.FatTable method), 34
from_buffer() (nobodd.fat.BIOSParameterBlock

class method), 38
from_buffer() (nobodd.fat.DirectoryEntry class

method), 40
from_buffer() (no-

bodd.fat.ExtendedBIOSParameterBlock class
method), 39

from_buffer() (no-
bodd.fat.FAT32BIOSParameterBlock class
method), 39

from_buffer() (nobodd.fat.FAT32InfoSector class
method), 40

from_buffer() (nobodd.fat.LongFilenameEntry
class method), 40

from_buffer() (nobodd.gpt.GPTHeader class
method), 28

from_buffer() (nobodd.gpt.GPTPartition class
method), 28

76 Index

nobodd 0.4 Documentation, Release 0.4

from_buffer() (nobodd.mbr.MBRHeader class
method), 29

from_buffer() (nobodd.mbr.MBRPartition class
method), 29

from_bytes() (nobodd.fat.BIOSParameterBlock
class method), 38

from_bytes() (nobodd.fat.DirectoryEntry class
method), 40

from_bytes() (no-
bodd.fat.ExtendedBIOSParameterBlock class
method), 39

from_bytes() (no-
bodd.fat.FAT32BIOSParameterBlock class
method), 39

from_bytes() (nobodd.fat.FAT32InfoSector class
method), 40

from_bytes() (nobodd.fat.LongFilenameEntry class
method), 41

from_bytes() (nobodd.gpt.GPTHeader class
method), 28

from_bytes() (nobodd.gpt.GPTPartition class
method), 28

from_bytes() (nobodd.mbr.MBRHeader class
method), 29

from_bytes() (nobodd.mbr.MBRPartition class
method), 29

from_bytes() (nobodd.tftp.Packet class method), 54
from_cluster() (nobodd.fs.FatFile class method),

32
from_data() (nobodd.tftp.ACKPacket class method),

55
from_data() (nobodd.tftp.DATAPacket class

method), 55
from_data() (nobodd.tftp.ERRORPacket class

method), 55
from_data() (nobodd.tftp.OACKPacket class

method), 55
from_data() (nobodd.tftp.Packet class method), 54
from_data() (nobodd.tftp.RRQPacket class method),

54
from_entry() (nobodd.fs.FatFile class method), 32
from_section() (nobodd.config.Board class

method), 61
from_string() (nobodd.config.Board class method),

61
FrozenDict (class in nobodd.tools), 66
fs (nobodd.path.FatPath property), 46

G
get_all() (nobodd.fs.Fat12Table method), 34
get_all() (nobodd.fs.Fat16Table method), 34
get_all() (nobodd.fs.Fat32Table method), 35
get_all() (nobodd.fs.FatTable method), 34
get_best_family() (in module nobodd.tools), 65
get_block() (nobodd.tftpd.TFTPClientState

method), 51
get_cluster() (in module nobodd.path), 48
get_parser() (in module nobodd.prep), 59

get_parser() (in module nobodd.server), 59
get_size() (nobodd.tftpd.TFTPClientState method),

51
get_systemd() (in module nobodd.systemd), 64
glob() (nobodd.path.FatPath method), 42
GPTHeader (class in nobodd.gpt), 28
GPTPartition (class in nobodd.gpt), 28

H
handle() (nobodd.tftpd.TFTPHandler method), 52
handle() (nobodd.tftpd.TFTPSubHandler method), 52

I
image

nobodd-prep command line option, 17
IncrementalDecoder (class in nobodd.netascii), 57
IncrementalEncoder (class in nobodd.netascii), 56
insert() (nobodd.fs.FatClusters method), 35
insert() (nobodd.fs.FatTable method), 34
is_absolute() (nobodd.path.FatPath method), 42
is_dir() (nobodd.path.FatPath method), 42
is_file() (nobodd.path.FatPath method), 43
is_mount() (nobodd.path.FatPath method), 43
is_relative_to() (nobodd.path.FatPath method),

43
items() (nobodd.fs.FatDirectory method), 37
iter_over() (nobodd.fat.DirectoryEntry class

method), 40
iter_over() (nobodd.fat.LongFilenameEntry class

method), 41
iterdir() (nobodd.path.FatPath method), 43

J
joinpath() (nobodd.path.FatPath method), 43

L
label (nobodd.disk.DiskPartition property), 27
label (nobodd.fs.FatFileSystem property), 31
labels() (in module nobodd.tools), 64
lfn_checksum() (in module nobodd.fat), 41
lfn_valid() (in module nobodd.fat), 41
LISTEN_FDS, 22
listen_fds() (nobodd.systemd.Systemd method), 63
LongFilenameEntry (class in nobodd.fat), 40

M
main() (in module nobodd.prep), 59
main() (in module nobodd.server), 58
main_pid() (nobodd.systemd.Systemd method), 63
mark_end() (nobodd.fs.FatTable method), 34
mark_free() (nobodd.fs.FatTable method), 34
match() (nobodd.path.FatPath method), 43
MAX_SFN_SUFFIX (nobodd.fs.FatDirectory attribute),

35
max_valid (nobodd.fs.Fat12Table attribute), 34
max_valid (nobodd.fs.Fat16Table attribute), 34
max_valid (nobodd.fs.Fat32Table attribute), 35

Index 77

nobodd 0.4 Documentation, Release 0.4

MBRHeader (class in nobodd.mbr), 29
MBRPartition (class in nobodd.mbr), 29
min_valid (nobodd.fs.Fat12Table attribute), 34
min_valid (nobodd.fs.Fat16Table attribute), 34
min_valid (nobodd.fs.Fat32Table attribute), 34
mkdir() (nobodd.path.FatPath method), 44
mode (nobodd.tftpd.TFTPClientState attribute), 51
module

nobodd.config, 60
nobodd.disk, 25
nobodd.fat, 38
nobodd.fs, 29
nobodd.gpt, 28
nobodd.mbr, 29
nobodd.netascii, 56
nobodd.path, 41
nobodd.prep, 59
nobodd.server, 58
nobodd.systemd, 62
nobodd.tftp, 53
nobodd.tftpd, 48
nobodd.tools, 64

N
name (nobodd.path.FatPath property), 46
negotiate() (nobodd.tftpd.TFTPClientState

method), 51
nobodd.config

module, 60
nobodd.disk

module, 25
nobodd.fat

module, 38
nobodd.fs

module, 29
nobodd.gpt

module, 28
nobodd.mbr

module, 29
nobodd.netascii

module, 56
nobodd.path

module, 41
nobodd.prep

module, 59
nobodd.server

module, 58
nobodd.systemd

module, 62
nobodd.tftp

module, 53
nobodd.tftpd

module, 48
nobodd.tools

module, 64
nobodd-prep command line option

-C, 18
-R, 18

--boot-partition, 17
--cmdline, 17
--copy, 18
--help, 17
--nbd-conf, 18
--nbd-host, 17
--nbd-name, 17
--remove, 18
--root-partition, 17
--serial, 18
--size, 17
--tftpd-conf, 18
--version, 17
-h, 17
-s, 17
image, 17

nobodd-tftpd command line option
--board, 21
--help, 21
--listen, 21
--port, 21
--version, 21
-h, 21

notify() (nobodd.systemd.Systemd method), 63

O
OACKPacket (class in nobodd.tftp), 55
of_type() (nobodd.config.ConfigArgumentParser

method), 61
OpCode (class in nobodd.tftp), 53
open() (nobodd.path.FatPath method), 44
open_dir() (nobodd.fs.FatFileSystem method), 30
open_entry() (nobodd.fs.FatFileSystem method), 30
open_file() (nobodd.fs.FatFileSystem method), 30
OrphanedLongFilename, 33

P
Packet (class in nobodd.tftp), 54
pairwise() (in module nobodd.tools), 65
parent (nobodd.path.FatPath property), 46
parents (nobodd.path.FatPath property), 46
partitions (nobodd.disk.DiskImage property), 26
partitions (nobodd.mbr.MBRHeader property), 29
parts (nobodd.path.FatPath property), 46
port() (in module nobodd.config), 62
prepare_image() (in module nobodd.prep), 59

R
read_bytes() (nobodd.path.FatPath method), 44
read_configs() (no-

bodd.config.ConfigArgumentParser method),
61

read_text() (nobodd.path.FatPath method), 44
readable() (nobodd.fs.FatFile method), 32
readable() (nobodd.tools.BufferedTranscoder

method), 66
readall() (nobodd.fs.FatFile method), 32

78 Index

nobodd 0.4 Documentation, Release 0.4

readall() (nobodd.tools.BufferedTranscoder
method), 66

readonly (nobodd.fs.FatClusters property), 35
readonly (nobodd.fs.FatFileSystem property), 31
ready() (nobodd.systemd.Systemd method), 63
relative_to() (nobodd.path.FatPath method), 44
reloading() (nobodd.systemd.Systemd method), 63
ReloadRequest, 59
remove_items() (in module nobodd.prep), 59
rename() (nobodd.path.FatPath method), 44
request_loop() (in module nobodd.server), 58
reset() (nobodd.netascii.StreamWriter method), 57
resolve() (nobodd.path.FatPath method), 45
resolve_path() (nobodd.server.BootHandler

method), 58
resolve_path() (nobodd.tftpd.SimpleTFTPHandler

method), 49
resolve_path() (nobodd.tftpd.TFTPBaseHandler

method), 49
rewrite_cmdline() (in module nobodd.prep), 59
RFC

RFC 2347, 14
RFC 2348, 14
RFC 2349, 14
RFC 7440, 14, 15

rglob() (nobodd.path.FatPath method), 45
rmdir() (nobodd.path.FatPath method), 45
root (nobodd.fs.FatFileSystem property), 31
root (nobodd.path.FatPath property), 47
RRQPacket (class in nobodd.tftp), 54
run() (nobodd.tftpd.TFTPSubServers method), 53

S
seek() (nobodd.fs.FatFile method), 32
seekable() (nobodd.fs.FatFile method), 33
server_close() (nobodd.server.BootServer

method), 58
server_close() (nobodd.tftpd.TFTPBaseServer

method), 49
service_actions() (nobodd.tftpd.TFTPSubServer

method), 52
set_defaults_from() (no-

bodd.config.ConfigArgumentParser method),
61

setup() (nobodd.tftpd.TFTPHandler method), 52
sfn_encoding (nobodd.fs.FatFileSystem property),

31
signature (nobodd.disk.DiskImage property), 27
SimpleTFTPHandler (class in nobodd.tftpd), 49
SimpleTFTPServer (class in nobodd.tftpd), 50
size (nobodd.fs.FatClusters property), 35
size() (in module nobodd.config), 62
source (nobodd.tftpd.TFTPClientState attribute), 51
stat() (nobodd.path.FatPath method), 45
stem (nobodd.path.FatPath property), 47
stopping() (nobodd.systemd.Systemd method), 63
StreamReader (class in nobodd.netascii), 57
StreamWriter (class in nobodd.netascii), 57

style (nobodd.disk.DiskImage property), 27
suffix (nobodd.path.FatPath property), 47
suffixes (nobodd.path.FatPath property), 47
Systemd (class in nobodd.systemd), 63

T
TerminateRequest, 59
TFTP_BINARY (in module nobodd.tftp), 53
TFTP_BLKSIZE (in module nobodd.tftp), 53
TFTP_DEF_BLKSIZE (in module nobodd.tftp), 53
TFTP_DEF_TIMEOUT_NS (in module nobodd.tftp), 53
TFTP_MAX_BLKSIZE (in module nobodd.tftp), 53
TFTP_MAX_TIMEOUT_NS (in module nobodd.tftp), 53
TFTP_MIN_BLKSIZE (in module nobodd.tftp), 53
TFTP_MIN_TIMEOUT_NS (in module nobodd.tftp), 53
TFTP_MODES (in module nobodd.tftp), 54
TFTP_NETASCII (in module nobodd.tftp), 54
TFTP_OPTIONS (in module nobodd.tftp), 54
TFTP_TIMEOUT (in module nobodd.tftp), 53
TFTP_TSIZE (in module nobodd.tftp), 54
TFTP_UTIMEOUT (in module nobodd.tftp), 53
TFTPBaseHandler (class in nobodd.tftpd), 49
TFTPBaseServer (class in nobodd.tftpd), 49
TFTPClientState (class in nobodd.tftpd), 50
TFTPHandler (class in nobodd.tftpd), 51
TFTPSubHandler (class in nobodd.tftpd), 52
TFTPSubServer (class in nobodd.tftpd), 52
TFTPSubServers (class in nobodd.tftpd), 52
timeout (nobodd.tftpd.TFTPClientState attribute), 51
to_buffer() (nobodd.fat.BIOSParameterBlock

method), 39
to_buffer() (nobodd.fat.DirectoryEntry method),

40
to_buffer() (nobodd.fat.ExtendedBIOSParameterBlock

method), 39
to_buffer() (nobodd.fat.FAT32BIOSParameterBlock

method), 39
to_buffer() (nobodd.fat.FAT32InfoSector method),

40
to_buffer() (nobodd.fat.LongFilenameEntry

method), 41
touch() (nobodd.path.FatPath method), 45
TransferDone, 53
transferred (nobodd.tftpd.TFTPClientState prop-

erty), 51
truncate() (nobodd.fs.FatFile method), 33
type (nobodd.disk.DiskPartition property), 27

U
unlink() (nobodd.path.FatPath method), 45
update_config() (no-

bodd.config.ConfigArgumentParser method),
61

V
values() (nobodd.fs.FatDirectory method), 37

Index 79

nobodd 0.4 Documentation, Release 0.4

W
watchdog_clean() (nobodd.systemd.Systemd

method), 63
watchdog_period() (nobodd.systemd.Systemd

method), 63
watchdog_ping() (nobodd.systemd.Systemd

method), 63
watchdog_reset() (nobodd.systemd.Systemd

method), 63
with_name() (nobodd.path.FatPath method), 45
with_stem() (nobodd.path.FatPath method), 45
with_suffix() (nobodd.path.FatPath method), 45
writable() (nobodd.fs.FatFile method), 33
write_bytes() (nobodd.path.FatPath method), 46
write_text() (nobodd.path.FatPath method), 46
WRQPacket (class in nobodd.tftp), 55

80 Index

	Installation
	Ubuntu PPA
	Other Platforms

	Tutorial
	Client Side
	Server Side
	Testing and Troubleshooting

	How To Guides
	How to netboot Ubuntu 22.04
	On the Pi
	On the Server
	Preparing the Image

	How to firewall your netboot server

	Explanations
	Netboot on the Pi
	DHCP
	TFTP
	TFTP Extensions

	Kernel

	CLI Reference
	nobodd-prep
	Synopsis
	Options
	Usage
	See Also
	Bugs

	nobodd-tftpd
	Synopsis
	Options
	Configuration
	Systemd/Inetd Usage
	See Also
	Bugs

	API Reference
	Disk Images
	nobodd.disk
	DiskImage
	DiskPartition
	Internal Classes

	nobodd.gpt
	Data Structures

	nobodd.mbr
	Data Structures

	FAT Filesystem
	nobodd.fs
	FatFileSystem
	FatFile
	Exceptions and Warnings
	Internal Classes and Functions

	nobodd.fat
	Data Structures
	Functions

	nobodd.path
	FatPath
	Internal Functions

	TFTP Service
	nobodd.tftpd
	Handler Classes
	Server Classes
	Command Line Use
	Internal Classes and Exceptions

	nobodd.tftp
	Enumerations
	Constants
	Packets

	nobodd.netascii
	Internal Functions

	Command line applications
	nobodd.server
	Handler Classes
	Server Classes
	Application Functions
	Exceptions

	nobodd.prep
	Application Functions

	nobodd.config
	ConfigArgumentParser
	Board
	Conversion Functions

	nobodd.systemd
	Systemd Class

	Miscellaneous
	nobodd.tools

	Development
	Development installation
	Building the docs
	Test suite

	Changelog
	Release 0.4 (2024-03-07)
	Release 0.3 (2024-03-06)
	Prototype 0.2 (unreleased)
	Prototype 0.1 (unreleased)

	License
	Python Module Index
	Index

